647 research outputs found

    AMS 3.0: prediction of post-translational modifications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We present here the recent update of AMS algorithm for identification of post-translational modification (PTM) sites in proteins based only on sequence information, using artificial neural network (ANN) method. The query protein sequence is dissected into overlapping short sequence segments. Ten different physicochemical features describe each amino acid; therefore nine residues long segment is represented as a point in a 90 dimensional space. The database of sequence segments with confirmed by experiments post-translational modification sites are used for training a set of ANNs.</p> <p>Results</p> <p>The efficiency of the classification for each type of modification and the prediction power of the method is estimated here using recall (sensitivity), precision values, the area under receiver operating characteristic (ROC) curves and leave-one-out tests (LOOCV). The significant differences in the performance for differently optimized neural networks are observed, yet the AMS 3.0 tool integrates those heterogeneous classification schemes into the single consensus scheme, and it is able to boost the precision and recall values independent of a PTM type in comparison with the currently available state-of-the art methods.</p> <p>Conclusions</p> <p>The standalone version of AMS 3.0 presents an efficient way to indentify post-translational modifications for whole proteomes. The training datasets, precompiled binaries for AMS 3.0 tool and the source code are available at <url>http://code.google.com/p/automotifserver</url> under the Apache 2.0 license scheme.</p

    Sphingosine kinase 1 overexpression induces MFN2 fragmentation and alters mitochondrial matrix Ca2+ handling in HeLa cells

    Get PDF
    Sphingosine kinase 1 (SKI) converts sphingosine to the bioactive lipid sphingosine 1-phosphate (SIP). SW binds to G-protein-coupled receptors (S1PR(1-5)) to regulate cellular events, including Ca2+ signaling. The SK1/S1P axis and Ca2+ signaling both play important roles in health and disease. In this respect, Ca2+ microdomains at the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are of importance in oncogenesis. Mitofusin 2 (MFN2) modulates ER-mitochondria contacts, and dysregulation of MFN2 is associated with malignancies. We show that overexpression of SKI augments agonist-induced Ca2+ release from the ER resulting in increased mitochondria] matrix Ca2+. Also, overexpression of SK1 induces MFN2 fragmentation, likely through increased calpain activity. Further, expressing putative calpain-cleaved MFN2 N- and C-terminal fragments increases mitochondrial matrix Ca2+ during agonist stimulation, mimicking the SK1 overexpression in cells. Moreover, SK1 overexpression enhances cellular respiration and cell migration. Thus, SK1 regulates MFN2 fragmentation resulting in increased mitochondrial Ca2+ and downstream cellular effects.Peer reviewe

    C4b-Binding Protein Is Present in Affected Areas of Myocardial Infarction during the Acute Inflammatory Phase and Covers a Larger Area than C3

    Get PDF
    BACKGROUND: During myocardial infarction reduced blood flow in the heart muscle results in cell death. These dying/dead cells have been reported to bind several plasma proteins such as IgM and C-reactive protein (CRP). In the present study we investigated whether fluid-phase complement inhibitor C4b-binding protein (C4BP) would also bind to the infarcted heart tissue. METHODS AND FINDINGS: Initial studies using immunohistochemistry on tissue arrays for several cardiovascular disorders indicated that C4BP can be found in heart tissue in several cardiac diseases but that it is most abundantly found in acute myocardial infarction (AMI). This condition was studied in more detail by analyzing the time window and extent of C4BP positivity. The binding of C4BP correlates to the same locations as C3b, a marker known to correlate to the patterns of IgM and CRP staining. Based on criteria that describe the time after infarction we were able to pinpoint that C4BP binding is a relatively early marker of tissue damage in myocardial infarction with a peak of binding between 12 hours and 5 days subsequent to AMI, the phase in which infiltration of neutrophilic granulocytes in the heart is the most extensive. CONCLUSIONS: C4BP, an important fluid-phase inhibitor of the classical and lectin pathway of complement activation binds to jeopardized cardiomyocytes early after AMI and co-localizes to other well known markers such as C3b

    Identifying Human Kinase-Specific Protein Phosphorylation Sites by Integrating Heterogeneous Information from Various Sources

    Get PDF
    Phosphorylation is an important type of protein post-translational modification. Identification of possible phosphorylation sites of a protein is important for understanding its functions. Unbiased screening for phosphorylation sites by in vitro or in vivo experiments is time consuming and expensive; in silico prediction can provide functional candidates and help narrow down the experimental efforts. Most of the existing prediction algorithms take only the polypeptide sequence around the phosphorylation sites into consideration. However, protein phosphorylation is a very complex biological process in vivo. The polypeptide sequences around the potential sites are not sufficient to determine the phosphorylation status of those residues. In the current work, we integrated various data sources such as protein functional domains, protein subcellular location and protein-protein interactions, along with the polypeptide sequences to predict protein phosphorylation sites. The heterogeneous information significantly boosted the prediction accuracy for some kinase families. To demonstrate potential application of our method, we scanned a set of human proteins and predicted putative phosphorylation sites for Cyclin-dependent kinases, Casein kinase 2, Glycogen synthase kinase 3, Mitogen-activated protein kinases, protein kinase A, and protein kinase C families (avaiable at http://cmbi.bjmu.edu.cn/huphospho). The predicted phosphorylation sites can serve as candidates for further experimental validation. Our strategy may also be applicable for the in silico identification of other post-translational modification substrates

    Rice_Phospho 1.0: a new rice-specific SVM predictor for protein phosphorylation sites

    Get PDF
    Experimentally-determined or computationally-predicted protein phosphorylation sites for distinctive species are becoming increasingly common. In this paper, we compare the predictive performance of a novel classification algorithm with different encoding schemes to develop a rice-specific protein phosphorylation site predictor. Our results imply that the combination of Amino acid occurrence Frequency with Composition of K-Spaced Amino Acid Pairs (AF-CKSAAP) provides the best description of relevant sequence features that surround a phosphorylation site. A support vector machine (SVM) using AF-CKSAAP achieves the best performance in classifying rice protein phophorylation sites when compared to the other algorithms. We have used SVM with AF-CKSAAP to construct a rice-specific protein phosphorylation sites predictor, Rice-Phospho 1.0 (http://bioinformatics.fafu.edu.cn/rice-phospho1.0). We measure the Accuracy (ACC) and Matthews Correlation Coefficient (MCC) of Rice-Phospho 1.0 to be 82.0% and 0.64, significantly higher than those measures for other predictors such as Scansite, Musite, PlantPhos and PhosphoRice. Rice-Phospho 1.0 also successfully predicted the experimentally identified phosphorylation sites in LOC-Os03g51600.1, a protein sequence which did not appear in the training dataset. In summary, Rice-phospho 1.0 outputs reliable predictions of protein phosphorylation sites in rice, and will serve as a useful tool to the community

    A Computational and Experimental Study of the Regulatory Mechanisms of the Complement System

    Get PDF
    The complement system is key to innate immunity and its activation is necessary for the clearance of bacteria and apoptotic cells. However, insufficient or excessive complement activation will lead to immune-related diseases. It is so far unknown how the complement activity is up- or down- regulated and what the associated pathophysiological mechanisms are. To quantitatively understand the modulatory mechanisms of the complement system, we built a computational model involving the enhancement and suppression mechanisms that regulate complement activity. Our model consists of a large system of Ordinary Differential Equations (ODEs) accompanied by a dynamic Bayesian network as a probabilistic approximation of the ODE dynamics. Applying Bayesian inference techniques, this approximation was used to perform parameter estimation and sensitivity analysis. Our combined computational and experimental study showed that the antimicrobial response is sensitive to changes in pH and calcium levels, which determines the strength of the crosstalk between CRP and L-ficolin. Our study also revealed differential regulatory effects of C4BP. While C4BP delays but does not decrease the classical complement activation, it attenuates but does not significantly delay the lectin pathway activation. We also found that the major inhibitory role of C4BP is to facilitate the decay of C3 convertase. In summary, the present work elucidates the regulatory mechanisms of the complement system and demonstrates how the bio-pathway machinery maintains the balance between activation and inhibition. The insights we have gained could contribute to the development of therapies targeting the complement system.Singapore. Ministry of Education (Grant T208B3109)Singapore. Agency for Science, Technology and Research (BMRC 08/1/21/19/574)Singapore-MIT Alliance (Computational and Systems Biology Flagship Project)Swedish Research Counci

    Knowing the enemy: ant behavior and control in a pediatric hospital of Buenos Aires

    Get PDF
    Ant control is difficult in systems even where a variety of control strategies and compounds are allowed; in sensitive places such as hospitals, where there are often restrictions on the methods and toxicants to be applied, the challenge is even greater. Here we report the methods and results of how we faced this challenge of controlling ants in a pediatric hospital using baits. Our strategy was based on identifying the species present and analyzing their behavior. On the one hand, we evaluated outdoors in the green areas of the hospital, the relative abundance of ant genera, their food preferences and the behavioral dominances. On the other hand, control treatments were performed using separately two boron compounds added to sucrose solution which was not highly concentrated to avoid constrains due to the viscosity. Most of the species in the food preference test accepted sugary food; only one species was recorded to visit it less than the protein foods. This result was consistent with the efficacy of control treatments by sugary baits within the rooms. For species that showed good acceptance of sugar solutions in the preference test outdoors, sugar bait control indoors was 100& effective. Conversely, for the only species that foraged significantly less on sugar food, the bait treatment was ineffective. This work reveals the importance of considering the behavior and feeding preferences of the species to be controlled by toxic baits.Fil: Josens, Roxana Beatriz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias; ArgentinaFil: Sola, Francisco Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias; ArgentinaFil: Marchisio, Nahuel MatĂ­as. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias; ArgentinaFil: Di Renzo, MarĂ­a Agostina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y BiologĂ­a Experimental. Laboratorio del Grupo de Estudio de Insectos Sociales; ArgentinaFil: Giacometti, Alina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias; Argentin

    PhosTryp: a phosphorylation site predictor specific for parasitic protozoa of the family trypanosomatidae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein phosphorylation modulates protein function in organisms at all levels of complexity. Parasites of the <it>Leishmania </it>genus undergo various developmental transitions in their life cycle triggered by changes in the environment. The molecular mechanisms that these organisms use to process and integrate these external cues are largely unknown. However <it>Leishmania </it>lacks transcription factors, therefore most regulatory processes may occur at a post-translational level and phosphorylation has recently been demonstrated to be an important player in this process. Experimental identification of phosphorylation sites is a time-consuming task. Moreover some sites could be missed due to the highly dynamic nature of this process or to difficulties in phospho-peptide enrichment.</p> <p>Results</p> <p>Here we present PhosTryp, a phosphorylation site predictor specific for trypansomatids. This method uses an SVM-based approach and has been trained with recent <it>Leishmania </it>phosphosproteomics data. PhosTryp achieved a 17% improvement in prediction performance compared with Netphos, a non organism-specific predictor. The analysis of the peptides correctly predicted by our method but missed by Netphos demonstrates that PhosTryp captures <it>Leishmania</it>-specific phosphorylation features. More specifically our results show that <it>Leishmania </it>kinases have sequence specificities which are different from their counterparts in higher eukaryotes. Consequently we were able to propose two possible <it>Leishmania</it>-specific phosphorylation motifs.</p> <p>We further demonstrate that this improvement in performance extends to the related trypanosomatids <it>Trypanosoma brucei </it>and <it>Trypanosoma cruzi</it>. Finally, in order to maximize the usefulness of PhosTryp, we trained a predictor combining all the peptides from <it>L. infantum, T. brucei and T. cruzi</it>.</p> <p>Conclusions</p> <p>Our work demonstrates that training on organism-specific data results in an improvement that extends to related species. PhosTryp is freely available at <url>http://phostryp.bio.uniroma2.it</url></p

    Sense of coherence as a predictor of onset of depression among Japanese workers: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to predict future onset of depression is required for primary prevention of depression. Many cross-sectional studies have reported a correlation between sense of coherence (SOC) and the presence of depressive symptoms. However, it is unclear whether SOC can predict future onset of depression. Therefore, whether measures to prevent onset of depression are needed in for persons with low SOC is uncertain. Thus, the aim of this cohort study was to determine whether SOC could predict onset of depression and to assess the need for measures to prevent onset of depression for persons with low SOC.</p> <p>Methods</p> <p>A total of 1854 Japanese workers aged 20-70 years in 2005 who completed a sense of coherence (SOC) questionnaire were followed-up until August 2007 using their sick-pay records with medical certificates. Depression was defined as a description of "depression" or "depressive" as a reason for sick leave on the medical certificates. The day of incidence of depression was defined as the first day of the sick leave. Risk ratios of SOC for onset of depression were calculated using a multivariate Cox proportional hazards model.</p> <p>Results</p> <p>Of the 1854 participants, 14 developed depression during a mean of 1.8 years of follow-up. After adjustment for gender and age, the risk ratio of high SOC compared with low SOC for sick leave from depression was 0.18 (95% confidence interval [CI], 0.04 to 0.79). The area under the receiver operating characteristic curve of SOC was 0.70 (95% CI, 0.58 to 0.82).</p> <p>Conclusions</p> <p>The SOC may be able to predict onset of depression in Japanese workers. Measures to prevent onset of depression for persons with low SOC might be required in Japanese workplaces. Thus, SOC could be useful for identifying persons at high risk for future depression.</p
    • 

    corecore