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Rice_Phospho 1.0: a new rice-
specific SVM predictor for protein 
phosphorylation sites
Shoukai Lin1,*, Qi Song1,*, Huan Tao1,*, Wei Wang1, Weifeng Wan1, Jian Huang1, 
Chaoqun Xu1, Vivien Chebii1, Justine Kitony1, Shufu Que1, Andrew Harrison2 & Huaqin He1

Experimentally-determined or computationally-predicted protein phosphorylation sites for distinctive 
species are becoming increasingly common. In this paper, we compare the predictive performance 
of a novel classification algorithm with different encoding schemes to develop a rice-specific protein 
phosphorylation site predictor. Our results imply that the combination of Amino acid occurrence 
Frequency with Composition of K-Spaced Amino Acid Pairs (AF-CKSAAP) provides the best description 
of relevant sequence features that surround a phosphorylation site. A support vector machine (SVM) 
using AF-CKSAAP achieves the best performance in classifying rice protein phophorylation sites 
when compared to the other algorithms. We have used SVM with AF-CKSAAP to construct a rice-
specific protein phosphorylation sites predictor, Rice_Phospho 1.0 (http://bioinformatics.fafu.edu.
cn/rice_phospho1.0). We measure the Accuracy (ACC) and Matthews Correlation Coefficient (MCC) of 
Rice_Phospho 1.0 to be 82.0% and 0.64, significantly higher than those measures for other predictors 
such as Scansite, Musite, PlantPhos and PhosphoRice. Rice_Phospho 1.0 also successfully predicted 
the experimentally identified phosphorylation sites in LOC_Os03g51600.1, a protein sequence which 
did not appear in the training dataset. In summary, Rice_phospho 1.0 outputs reliable predictions of 
protein phosphorylation sites in rice, and will serve as a useful tool to the community.

Phosphorylation is one of the most important protein post-translation modification (PTMs) in eukar-
yotes. It plays essential roles in the majority of biological pathways, regulating cellular processes like 
metabolism, proliferation, differentiation and apoptosis1. More than 30% of all eukaryotic proteins are 
estimated to undergo reversible phosphorylation2. Biochemically, phosphorylation results in a transfer 
of a phosphate moiety from adenosine triphosphate (ATP) to the acceptor residue, thereby generating 
adenosine diphosphate (ADP) whilst inducing the residue to be phosphorylated. The process of protein 
phosphorylation usually involves distinct short peptide motifs, or patterns including phosphorylation 
of substrate sites, being recognized by different protein kinases which then leads to a phosphate moiety 
being typically attached to either Serine (Ser), Threonine (Thr) or Tyrosine (Tyr) residues.

Conventional experimental identifications and recent advances in high throughput Mass Spectrometry 
(MS) techniques have generated a large number of phosphorylated substrates with confirmed phospho-
rylation sites. In parallel, a series of algorithms have also been developed to predict phosphorylation sites 
from amino acid sequence. These range from simple motif or pattern searches to more complex machine 
learning methods like Artificial Neural Networks (ANN) and Support Vector Machines (SVM). Examples 
of such predictive algorithms include NetPhos3, NetPhosK4, KinasePhos5, DISPHOS6, Scansite7, PPSP8, 
GPS9, PredPhospho10 and Musite11.

Most computational phosphorylation site predictors are not organism-specific predictors. However, 
with the increases in experimentally verified protein phosphorylation sites for different organisms, an 
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increasing goal is to develop organism-specific phosphorylation predictors, such has occurred for yeast12, 
Arabidopsis13 and rice1. The yeast-specific predictor, NetPhosYeast, outperforms existing generic predic-
tors in the identification of phosphorylation sites in yeast12. PhosPhAt predicting phosphorylated-Serine 
sites for Arabidopsis is found to perform better with Arabidopsis sequences than other generic predic-
tors13. Furthermore, a protein family specific phosphorylation site predictor, PhosTryp, was developed 
specifically for the trypanosomatidae family in parasitic protozoa14.

We have focused our efforts on Rice (Oryza sativa L.). Rice is considered a model plant species of the 
monocots group, it has a sequenced genome15 and serves as a cornerstone for the study of functional 
genomics in cereal plants16. Phosphorylation proteins have been identified in rice treated with vari-
ous hormones17 and under different environmental conditions, including high salinity18, drought19 and 
high temperature20. Many phosphorylation sites in rice were identified by Nakagami et al.21 However, 
current predictors perform poorly when individually used to predict phosphorylation sites in rice phos-
phoproteins1. We have therefore established a meta-predictor for rice-specific phosphorylation sites1. 
However, this rice-specific predictor was not trained directly by the rice phosphorylation sites data, 
but was developed by integrating six newly predicting programs, including NetPhosK, NetPhos2.0, 
KinasePhos, PrePhospho 1.0, Scansite and DISPHOS. This paper augments this earlier work by building 
a Support Vector Machine (SVM) prediction model using experimentally identified rice phosphorylation 
sites directly.

Results
Performance of the 6 encoding schemes. The performance of the three sole encoding schemes 
was measured by using different sizes of datasets and with SVM used as the classifier. CKSAAP per-
formed best among the three sole encoding schemes (Fig. 1). However, with the size of dataset increasing, 
the performance of SVM with CKSAAP decreased, SVM with AF kept fluctuating, while that of SVM 
with KNN increased (Table 1). The same changing trends (CKSSAP decreasing, AF fluctuating and KNN 
increasing) in performance of SVM with AF, KNN or CKSAAP was also true when the ratio of (+ ) sites 
to (− ) sites increased (Table 1).

The performance of AF combined with CKAAP (AF-CKSAAP) was better than the sole encoding 
scheme, AF or CKSAAP (Fig. 2A). The same was true for AF combined with KNN (AF-KNN) (Fig. 2B). 
However, CKSAAP combined with KNN (CKSAAP-KNN) outperformed KNN, but did not outper-
form CKSAAP (Fig. 2C). In the preliminary experiment, we found that the combination of all the three 
encoding schemes did not significantly outperform CKSAAP (Data not shown) but increased feature 
dimensions. This result implies that AF, KNN and CKSAAP might be complementary to each other to 
some extent, especially AF and CKSAAP.

Performance of 4 different classifiers. The performance of the classifiers with the six different 
encoding schemes were firstly compared. The best results of a DT classifier were for CKSAAP, with an ACC 
of 71.14% and MCC of 0.314 (Fig. 3). The best results of a KNN classifier were for CKSAAP-KNN, with 
an ACC of 73.71% and MCC of 0.402 (Fig. 3). The best results of a RF classifier were for AF-KNN, with 
an ACC of 75.1% and MCC of 0.458 (Fig. 3). The best results of a SVM classifier were for AF-CKSAAP, 
with an ACC of 80.90% and MCC of 0.617 (Fig. 3).

We then compared classifying ability of the 4 different classifiers on phosphorylation sites of proteins 
in rice. As shown in Fig.  3, SVM performed best on the phosphorylation sites among the 4 classifiers 
with any of the 6 encoding schemes. The SVM with AF-CKSAAP, CKSAAP and CKSAAP-KNN lay in 
the top 3 predicting models.

Figure 1. ROC curves of predicting performance of SVM with 3 different sole encoding schemes. *In the 
diagrams, the increased area under the ROC indicates the improved classification performance. The same 
below.
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Performance of the top three predicting models on different phospho-amio acids. We used 
different phospho-amino acids datasets with different ratio of (+ ) sites to (− ) sites to detect the per-
formance of the top three predicting models (SVM with AF-CKSAAP, SVM with CKSAAP and SVM 
with CKSAAP-KNN). For phospho-serine, phospho-threonine or phospho-tyrosine sites, SVM with 
AF-CKSAAP out-performed SVM with CKSAAP or CKSAAP-KNN, even though the ratio of (+ ) sites 
to (− ) sites in the dataset was unbalanced (Table 2).

Blom et al. (2004) suggested that a real non-phosphorylation site had to be solvent-inaccessible4. After 
discarding the predicting solvent-accessible non-phosphorylation sites from Table S2 and composing a 
new negative dataset (Table S3), we used the new training dataset which was extracted from Table S3 
and its balancing positive dataset to re-train the top three predicting models. Table  3 also indicated 
that the overall performance of SVM with AF-CKSAAP was better than that of SVM with CKSAAP or 
CKSAAP-KNN.

Assessment of the predictor, Rice_Phospho 1.0, with the newly existing predictors. We used 
SVM with AF-CKSAAP to develop a new rice-specific predictor, Rice_Phospho 10. We applied the inde-
pendent test dataset to compare the predicting performance of Rice_phospho 1.0 with the newly existing 
predictors, including Scansite, Musite, PlantPhos and PhosphoRice. The MCC of the prediction perfor-
mance of Rice_phosphos 1.0 in comparison to Scansite, Musite and PhosphoRice were shown in Table 4. 
Rice_Phospho 1.0 had higher MCC value than the existing predictors, indicating that the performance 
of Rice_Phospho 1.0 was significantly better than that of Scansite, Musite and PhosphoRice. The Area 
Under ROC Curve (AUC) of Rice_Phospho1.0 was higher than that of PlantPhos (Fig. 4), implying that 
Rice_Phospho 1.0 also outperformed PlantPhos.

Construction online predictor, Rice_Phospho 1.0. We constructed the online tool, Rice_Phospho 
1.0, which was a specific SVM predictor on the protein phosphorylation sites in rice (Oryza sativa L.). 
The potential phosphorylation sites are retrieved after the user uploads a protein sequence in FASTA 
format into the text area and selects one of the encoding schemes (Fig. 5). Rice_Phospho 1.0 is accessible 
via http://bioinformatics.fafu.edu.cn/rice_phospho1.0.

Discussion
Our analysis indicates that CKSAAP encoding can extract the character around the phoshorylation sites 
more concisely than AF and KNN. Generally, AF and KNN methods select the position-specific feature 
of a sequence fragment, while the CKSAAP encoding pays attention to the co-location of amino acid 
pairs at different positions surrounding phosphorylation sites22. The sequence character extracted by 
CKSAAP can also reflect the composition of short linear motifs, which have been widely reported to 
be involved in many biological processes such as the communication of protein-protein interactions23. 
The results in this paper imply that short linear motifs maybe more important than position-specific 
patterns in recognizing protein phosphorylated substrates. CKSAAP encoding has been reported to pre-
dict the structural property of a sequence fragment24 and PTM sites, including ubiquitylated sites22 and 
mucin-type O-glycosylated sites25. Therefore, we might also expect a better performance of the CKSAAP 
encoding in the prediction of protein phosphorylated sites.

Method (+) sites (−) sites Ratio Sn (%) Sp (%) ACC (%) MCC

AF 112 127 0.88:1 67.20 66.13 69.51 0.403

365 370 0.99:1 72.00 73.07 75.11 0.461

853 937 0.91:1 68.31 69.43 72.30 0.408

1530 1630 0.94:1 69.37 68.21 70.15 0.391

2107 2018 1.04:1 75.33 76.86 74.94 0.477

KNN 112 127 0.88:1 57.00 52.3 58.29 0.237

365 370 0.99:1 60.14 58.12 59.50 0.281

853 937 0.91:1 68.22 63.10 67.20 0.306

1530 1630 0.94:1 68.73 65.16 69.75 0.362

2107 2018 1.04:1 75.35 71.03 72.39 0.407

CKSAAP 112 127 0.88:1 82.77 80.30 83.37 0.633

365 370 0.99:1 82.27 80.63 82.84 0.617

853 937 0.91:1 81.02 80.12 81.27 0.623

1530 1630 0.94:1 77.84 79.70 80.56 0.612

2107 2018 1.04:1 80.02 79.33 80.41 0.605

Table 1.  Performance of 3 sole encoding schemes on different size of dataset.

http://bioinformatics.fafu.edu.cn/rice_phospho1.0
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More importantly, the reasonably good performance of SVM with AF-CKSAAP reflected that the 
combining encoding schemes, AF and CKSAAP, can effectively capture the information of enriched/
depleted residue pairs around phosphorylation sites in rice. The AF encoding scheme clearly charac-
terizes amino acids in different positions surrounding a potential phosphorylated site, but it is weak in 
reflecting the coupling effect of amino acid pairs at different positions. On the other hand, the CKSAAP 
has the ability to detect the relationship between amino acid pairs at different positions, but it can-
not capture the position specific amino acid information22. Therefore, the complementary capability of 
AF to CKSAAP results in a better performance for AF-CKSAAP in extracting the sequence charac-
ter surrounding a potential phosphorylated site when compared with the individual encoding scheme. 
Meanwhile, in terms of different phospho-amino acid sites, SVM with AF-CKSAAP performed better 
than others, even though the ratio of (+ ) sites to (− ) sites in the test dataset was unbalanced. This is 
because the accuracy of the predictors may be overestimated when the ratio of (+ ) sites to (− ) sites in 
the training dataset was optimized1.

We used the model of SVM with AF-CKSAAP to develop an online tool, Rice_Phospho 1.0, which 
was a specific predictor on the phosphorylation sites in rice. To verify the performance of Rice_Phospho 
1.0, one experimentally identified phosphorylated protein in rice which did not appear in the training 
dataset was used as a query sequence. A α -tubulin isoform (LOC_Os03g51600.1) was experimentally 
identified to be phosphorylated at Thr349 site by a comprehensive mutagenesis method26. Rice_Phospho 
1.0 successfully predicted the experimentally identified pThr at the position 349. Moreover, three more 
sites, including Ser216, Tyr432 and Ser439, were predicted as novel phophorylated sites.

In summary, we have benchmarked the combination of several encoding schemes and classifica-
tion routines to establish their relative effectiveness. This led to the choice of a SVM with AF-CKSAAP 
encoding scheme which we have incorporated into the development of an effective rice specific protein 
phosphorylation site predictor, Rice_phospho 1.0 (http://bioinformatics.fafu.edu.cn/rice_phospho1.0). 
Rice_Phospho 1.0 provides state of the art levels of reliability in predicting protein phosphorylation sites 
in rice and will be a useful tool to the community.

Figure 2. ROC curves of predicting performance of SVM with the combining encoding schemes. *A. 
ROC curves of SVM with AF-CKSAAP, AF and CKSAAP. B. ROC curves of SVM with AF-KNN, AF and 
KNN. C. ROC curves of SVM with CKSAAP-KNN, KNN and CKSAAP.

Figure 3. MCC of predicting performance of different classification algorithms with different encoding 
schemes. 

http://bioinformatics.fafu.edu.cn/rice_phospho1.0
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Methods
Phospho-amino 

acids Ratio Sn (%) Sp (%) ACC (%) MCC

CKSAAP Serine 1:0.7 79.84 80.41 80.36 0.617

1:1 80.32 80.55 80.51 0.619

0.7:1 79.91 80.31 80.16 0.613

Threonine 1:0.34 79.89 80.11 79.95 0.597

1:1 79.34 79.62 78.79 0.583

0.34:1 78.42 78.86 78.37 0.589

Tyrosine 1:0.17 84.17 83.36 84.00 0.638

1:1 77.25 78.71 78.03 0.573

0.17:1 74.61 73.83 73.02 0.532

AF- CKSAAP Serine 1:0.7 81.22 79.20 81.15 0.623

1:1 81.87 81.23 82.14 0.635

0.7:1 83.22 83.14 84.71 0.642

Threonine 1:0.34 78.57 78.27 79.52 0.601

1:1 76.28 77.31 77.20 0.593

0.34:1 78.19 77.22 78.05 0.591

Tyrosine 1:0.17 80.19 79.75 80.72 0.623

1:1 78.35 77.55 79.12 0.597

0.17:1 77.75 75.38 78.04 0.593

CKSAAP -KNN Serine 1:0.7 77.14 75.43 76.31 0.542

1:1 76.18 74.83 75.12 0.526

0.7:1 80.86 80.17 81.14 0.624

Threonine 1:0.34 71.77 71.19 72.37 0.497

1:1 72.46 72.81 73.34 0.509

0.34:1 75.53 73.11 74.27 0.520

Tyrosine 1:0.17 68.91 69.71 69.53 0.418

1:1 69.92 70.24 70.11 0.433

0.17:1 72.86 73.42 70.34 0.465

Table 2.  Predicting performance of SVM with 3 different encoding schemes on different phospho-
amino acid sites.

Models Sn (%) Sp (%)
ACC 
(%) MCC AUC

CKSAAP 79.47 82.83 81.15 0.623 0.839

AF-CKSAAP 82.84 81.59 82.04 0.641 0.858

CKSAAP-KNN 77.46 79.86 78.63 0.579 0.820

Table 3.  Predicting performance of the three top SVM models trained by the negative dataset in Table 
S3 and its balancing positive dataset. AUC is the area under ROC curve.

Tools Sn (%) Sp (%)
ACC 
(%) MCC

Musite 55.18 81.91 73.32 0.368

Scansite 75.18 53.23 59.90 0.285

PhosphoRice 70.25 74.40 75.32 0.462

Rice_Phospho 1.0 79.93 81.21 80.33 0.616

Table 4.  Predicting performance of SVM models and newly developed predictors.
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Methods
Preprocessing of dataset. We collected rice phosphorylation sites from the recent literature of 
Nakagami et al.21. We also used the feature table of Swiss-Prot database, from which records annotated 
as ‘predicted’ or ‘similarity’ were excluded. After removing the redundant phosphorylation sites, the 
number of serine (S), threonine (T) and tyrosine (Y) substrates were 4220, 605 and 141 respectively, and 
these phosphorylation sites were involved in 2162 proteins1.

The 25-mer sequences (− 12 to + 12) surrounding the phosphorylation sites were extracted from the 
protein sequences1. Because all of these phosphorylation sites were experimentally verified, they were 
regarded as (+ ) sites and compiled within a positive dataset (Table S1). The Ser, Thr and Tyr residues 
that were not annotated as phosphorylation sites within the dataset were regarded as (− ) sites (i.e., 
non-phosphorylation sites), and the 25-mer sequences surrounding them were extracted and compiled 
within a negative dataset (Table S2). We extracted one-third of the data from each of these two datasets to 
compose an independent test dataset. We used the remainder of the data in the two datasets to construct 
a training dataset. The phosphorylation and non-phosphorylation sites were randomly chosen from the 
training dataset to compile a different ratio of (+ ) sites to (− ) sites dataset during the cross-validation 
processes.

Because the residues buried in the core of a protein would not be accessible to any kinases4, the 
NetSurfP program27 was used to predict the surface accessibility of each non-phosphorylated site in 
Table S2. The solvent-inaccessible non-phosphorylation sites were compiled in Table S3. We randomly 
selected one third of the data to compose another independent test dataset, and re-trained a Support 
Vector Machine (SVM) by using the Composition of K-Spaced Amino Acid Pairs (CKSAAP), Amino 
acid occurrence frequency combined with CKSAAP (AF-CKSAAP), CKSAAP combined with K-Nearest 
Neighbor (CKSAAP-KNN) as feature selection methods.

A standard 10-fold cross validation was used to train the classifiers. We calculated the Sensitivity (Sn), 
Specificity (Sp), Accuracy (ACC) and the Matthew’s Correlation Coefficient (MCC) of each predictor1. 

Figure 4. ROC curves of predicting performance of Rice_Phospho 1.0 and PlantPhos. 

Figure 5. Interface of the online predictor, Rice_Phospho 1.0, on rice protein phosphorylation sites. 
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The dataset was randomly partitioned into 10 subsets, including one testing subset and nine training 
subsets. Each predictor was trained by shifting the test subset stepwise so that all data is used for training 
and testing.

Encoding schemes and feature selection. K-Nearest Neighbor (KNN). The KNN method is used to 
classify the samples based on their distances. For each sequence, the distances between all the sequences 
of positive datasets or negative datasets were measured using the formula introduced by Gao et al. 
(2009)28.

D
Sim s i s i

w
1 2

2 1 1
i w
w

=
∑ ( ( ), ( ))

+ ( )
=−

where two protein sequences s1 =  {s1(− w), s1(− w +  1),…, s1(w)} and s2 =  {s2(− w), s2(− w +  1),…, 
s2(w)}, w =  12, sim—amino acid similarity matrix—is derived from the normalized BLOSUM62.

The K nearest distances were selected, and the average distance among them was calculated. This 
process was repeated for different values of K (0.1%, 0.2%, 0.5%, 1%, 2%, 5% and 10% of the positive 
datasets or negative datasets). The ratios of the average distances between positive datasets and negative 
datasets were extracted as the feature values28.

Composition of K-Spaced Amino Acid Pairs (CKSAAP). CKSAAP has been successfully used to rep-
resent sequence fragments22. A sequence fragment may contain 400 types (AxA, AxC, AxD, …, OxO) 
of K-spaced amino acid pairs (i.e. the pairs separated by K other amino acids). The flowchart and the 
calculation used for the CKSAAP feature selection approach are shown in Fig. S1. The value of NAA is the 
composition of the corresponding amino acid pairs in the sequence fragment, while Ntotal represent the 
total composition of amino acid pairs in the sequence fragment. For instance, if there are n AxA pairs 
in the sequence fragment, the value of corresponding component of NAA is n (Fig. S1).

When the value of K is increased, the prediction accuracy and sensitivity increases, but so does the 
computational complexity and the time required for training the models22,29. In this paper, we considered 
the CKSAAP encoding scheme with K =  0, 1, 2, 3, 4 and 5, meaning the total dimension of the 6-spaced 
feature vector is 2400.

Amino acid occurrence frequency (AF). The frequency of one amino acid in each sequence fragment 
was calculated by the following equation:

vi ci
len seq

i 1 20
2

=
( )

, = , …, ,
( )

where ci and len (seq) denote the number of instances of amino acid i in the sequence fragment and 
the length of the sequence fragment, respectively. vi illustrates the frequency of the amino acids in the 
sequence.

Combined encoding schemes. We combined the three sole encoding schemes (KNN, CKSAAP and 
AF) to construct three bi-encoding schemes. Because of the high dimensionality of the CKSAAP, relief-F 
was used to decrease the total dimension for the combined methods. Relief-F is the extension to the 
original Relief algorithm, which is able to deal with noisy and multi-class problems rather than two-class 
problem30. Relif-F was run in Waikato Environment for Knowledge Analysis (WEKA) to decrease the 
dimension of the combining encoding schemes31, leading to total dimensions for AF-KNN, AF-CKSAAP 
and CKSAAP-KNN of 27, 952 and 939, respectively.

Classification Algorithms. Support Vector Machine (SVM). A SVM is a supervised learning algo-
rithm for two-group classification problems, whose goal is to find a rule that best maps each member 
of the training set to the correct classification25. Briefly, SVM constructs a hyperplane that separates 
two different groups of feature vectors in the training set with a maximum margin. The orientation of 
a test sample relative to the hyperplane gives the predicted score, and hence the predicted class can be 
derived32. Because of its solid mathematical foundation in statistics theory, and the ability of overcoming 
over-fitting, SVMs are popular and have been used to predict protein PTMs sites28, protein localization33 
and protein-protein interaction34. In this paper, LibSVM in WEKA with Radial Basis Kernels (RBF) used 
with K (xi, yi) =  exp(− γ ||xi −  yi||2)29.

Random Forest (RF). The RF is an ensemble of unpruned decision trees35 which have already been used 
to predict protein-protein interactions36,37 and long disordered regions in proteins38. In RF, the number 
of trees in the forest is adjustable, and each tree is grown to full length using a subset of the training 
dataset. To classify an instance with an unknown class label, each tree casts a unit classification vote. 
The forest selects the classification having the most votes over all the trees in the forest. Therefore, there 
are two key parameters in RF. One is the number of the trees, M, the other is the number of features 
selected randomly, m. In this paper, we selected the optimal value of M =  100, and determined m based 
on the result of a preliminary evaluation.
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Decision Tree (DT). Decision trees are an attractive predictive modeling procedure because of their easy 
interpretation by non-statisticians. In DT algorithms, the classification tree analysis generates groups of 
individuals on the basis of a selected criterion, the Gini index, for splitting a group into two to maxi-
mize the probability of a single outcome, namely substantial renal deterioration39. The recursive process 
of partitioning data continues until the Gini index indicates that the tree fits, without overfitting, the 
information contained in the dataset. It can provide a practical model for dichotomous outcomes if the 
validity of the obtained model is proved sufficient. The missing values were replaced with values mini-
mizing the impurity of the nodes, median values for continuous variables and most frequent categories 
for categorical variables, or distribution-based estimates. The decision trees and random forests were 
implemented using R platform with package e1071.

Performance Assessment. Predictors comparison. The current rice-specific phosphorylation sites pre-
dictor, PhosphoRice, two non-organism specific predictors, Musite and Scansite, and one plant-specific 
predictor, PlantPhos, were compared with the new predictor in this paper. In Musite online predic-
tion, General phospho-serine/threonine and General phospho-tyrosine (Green plants) were selected and 
25mer was input to the predictor with default settings. In Scansite, the setting of medium stringency level 
was selected and resulted in the production of Scansite_medium predictor. In PlantPhos, phosphoryla-
tion sites will be predicted with the score over − 3.0 (HMMER bit score).

Evaluation. Sn, Sp, ACC and MCC were employed to evaluate the performance of the different pre-
dictors.

Sn TP
TP FN 3=
+

,
( )

Sp TN
TN FP 4=
+

,
( )

ACC TP TN
TP FP TN FN 5=

+
+ + +

,
( )

MCC
TP TN FN FP

TP FN TN FP TP FP TN FN 6
=

( × ) − ( × )

( + ) × ( + ) × ( + ) × ( + ) ( )

where TP, FP, FN, and TN denote true positives, false positives, false negatives, and true negatives. Sn 
and Sp illustrate the correct prediction ratios of positive and negative datasets, respectively. Because MCC 
is much less susceptible to the ratio of positive samples and negative samples in the dataset, it is the most 
widely used prediction measure for two-class prediction programs1.

Statistics. We used SPSS 16.0 to create receiver operating characteristic (ROC) curves to measure the 
performance of different predictors. For each possible threshold, the sensitivity and specificity were eval-
uated, and the ROC curves [sensitivity versus (1-specificity) curve] were used to compare the predictive 
performance of different classifiers with different encoding schemes.
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