1,158 research outputs found
Structural Synthesis for GXW Specifications
We define the GXW fragment of linear temporal logic (LTL) as the basis for
synthesizing embedded control software for safety-critical applications. Since
GXW includes the use of a weak-until operator we are able to specify a number
of diverse programmable logic control (PLC) problems, which we have compiled
from industrial training sets. For GXW controller specifications, we develop a
novel approach for synthesizing a set of synchronously communicating
actor-based controllers. This synthesis algorithm proceeds by means of
recursing over the structure of GXW specifications, and generates a set of
dedicated and synchronously communicating sub-controllers according to the
formula structure. In a subsequent step, 2QBF constraint solving identifies and
tries to resolve potential conflicts between individual GXW specifications.
This structural approach to GXW synthesis supports traceability between
requirements and the generated control code as mandated by certification
regimes for safety-critical software. Synthesis for GXW specifications is in
PSPACE compared to 2EXPTIME-completeness of full-fledged LTL synthesis. Indeed
our experimental results suggest that GXW synthesis scales well to
industrial-sized control synthesis problems with 20 input and output ports and
beyond.Comment: The long (including appendix) version being reviewed by CAV'16
program committee. Compared to the submitted version, one author (out of her
wish) is moved to the Acknowledgement. (v2) Corrected typos. (v3) Add an
additional remark over environment assumption and easy corner case
The influence of artificially increased hip and trunk stiffness on balance control in man
Lightweight corsets were used to produce mid-body stiffening, rendering the hip and trunk joints practically inflexible. To examine the effect of this artificially increased stiffness on balance control, we perturbed the upright stance of young subjects (20-34years of age) while they wore one of two types of corset or no corset at all. One type, the "half-corsetâ, only increased hip stiffness, and the other, the "full-corsetâ, increased stiffness of the hips and trunk. The perturbations consisted of combined roll and pitch rotations of the support surface (7.5deg, 60deg/s) in one of six different directions. Outcome measures were biomechanical responses of the legs, trunk, arms and head, and electromyographic (EMG) responses from leg, trunk, and upper arm muscles. With the full-corset, a decrease in forward stabilising trunk pitch rotation compared to the no-corset condition occurred for backward pitch tilts of the support surface. In contrast, the half-corset condition yielded increased forward trunk motion. Trunk backward pitch motion after forwards support-surface perturbations was the same for all corset conditions. Ankle torques and lower leg angle changes in the pitch direction were decreased for both corset conditions for forward pitch tilts of the support-surface but unaltered for backward tilts. Changes in trunk roll motion with increased stiffness were profound. After onset of a roll support-surface perturbation, the trunk rolled in the opposite direction to the support-surface tilt for the no-corset and half-corset conditions, but in the same direction as the tilt for the full-corset condition. Initial head roll angular accelerations (at 100ms) were larger for the full-corset condition but in the same direction (opposite platform tilt) for all conditions. Arm roll movements were initially in the same direction as trunk movements, and were followed by large compensatory arm movements only for the full-corset condition. Leg muscle (soleus, peroneus longus, but not tibialis anterior) balance-correcting responses were reduced for roll and pitch tilts under both corset conditions. Responses in paraspinals were also reduced. These results indicate that young healthy normals cannot rapidly modify movement strategies sufficiently to account for changes in link flexibility following increases in hip and trunk stiffness. The changes in leg and trunk muscle responses failed to achieve a normal roll or pitch trunk end position at 700ms (except for forward tilt rotations), even though head accelerations and trunk joint proprioception seemed to provide information on changed trunk movement profiles over the first 300ms following the perturbation. The major adaptation to stiffness involved increased use of arm movements to regain stability. The major differences in trunk motion for the no-corset, half-corset and full-corset conditions support the concept of a multi-link pendulum with different control dynamics in the pitch and roll planes as a model of human stance. Stiffening of the hip and trunk increases the likelihood of a loss of balance laterally and/or backwards. Thus, these results may have implications for the elderly and others, with and without disease states, who stiffen for a variety of reason
Temporal Stream Logic: Synthesis beyond the Bools
Reactive systems that operate in environments with complex data, such as
mobile apps or embedded controllers with many sensors, are difficult to
synthesize. Synthesis tools usually fail for such systems because the state
space resulting from the discretization of the data is too large. We introduce
TSL, a new temporal logic that separates control and data. We provide a
CEGAR-based synthesis approach for the construction of implementations that are
guaranteed to satisfy a TSL specification for all possible instantiations of
the data processing functions. TSL provides an attractive trade-off for
synthesis. On the one hand, synthesis from TSL, unlike synthesis from standard
temporal logics, is undecidable in general. On the other hand, however,
synthesis from TSL is scalable, because it is independent of the complexity of
the handled data. Among other benchmarks, we have successfully synthesized a
music player Android app and a controller for an autonomous vehicle in the Open
Race Car Simulator (TORCS.
Synthesis of minimum-cost shields for multi-agent systems
In this paper, we propose a general approach to derive runtime enforcement implementations for multiagent systems, called shields, from temporal logical specifications. Each agent of the multi-agent system is monitored, and if needed corrected, by the shield, such that a global specification is always satisfied. The different ways of how a shield can interfere with each agent in the system in case of an error introduces the need for quantitative objectives. This work is the first to discuss the shield synthesis problem with quantitative objectives. We provide several cost functions that are utilized in the multi-agent setting and provide methods for the synthesis of cost-optimal shields and fair shields, under the given assumptions on the multi-agent system. We demonstrate the applicability of our approach via a detailed case study on UAV mission planning for warehouse logistics and simulating the shielded multi-agent system on ROS/Gazebo
OBDD-Based Representation of Interval Graphs
A graph can be described by the characteristic function of the
edge set which maps a pair of binary encoded nodes to 1 iff the nodes
are adjacent. Using \emph{Ordered Binary Decision Diagrams} (OBDDs) to store
can lead to a (hopefully) compact representation. Given the OBDD as an
input, symbolic/implicit OBDD-based graph algorithms can solve optimization
problems by mainly using functional operations, e.g. quantification or binary
synthesis. While the OBDD representation size can not be small in general, it
can be provable small for special graph classes and then also lead to fast
algorithms. In this paper, we show that the OBDD size of unit interval graphs
is and the OBDD size of interval graphs is $O(\
| V \ | \log \ | V \ |)\Omega(\ | V \ | \log
\ | V \ |)O(\log \ | V \ |)O(\log^2 \ | V \ |)$ operations and
evaluate the algorithms empirically.Comment: 29 pages, accepted for 39th International Workshop on Graph-Theoretic
Concepts 201
Improving Community Healthcare for Patients with Parkinson's Disease: The Dutch Model
Because of the complex nature of Parkinson's disease, a wide variety of health professionals are involved in care. Stepwise, we have addressed the challenges in the provision of multidisciplinary care for this patient group. As a starting point, we have gained detailed insight into the current delivery of allied healthcare, as well as the barriers and facilitators for optimal care. To overcome the identified barriers, a tertiary referral centre was founded; evidence-based guidelines were developed and cost-effectively implemented within regional community networks of specifically trained allied health professionals (the ParkinsonNet concept). We increasingly use ICT to bind these professional networks together and also to empower and engage patients in making decisions about their health. This comprehensive approach is likely to be feasible for other countries as well, so we currently collaborate in a European collaboration to improve community care for persons with Parkinson's disease
Parallelizing Synthesis from Temporal Logic Specifications by Identifying Equicontrollable States
For the synthesis of correct-by-construction control policies from temporal logic specifications the scalability of the synthesis algorithms is often a bottleneck. In this paper, we parallelize synthesis from specifications in the GR(1) fragment of linear temporal logic by introducing a hierarchical procedure that allows decoupling of the fixpoint computations. The state space is partitioned into equicontrollable sets using solutions to parametrized games that arise from decomposing the original GR(1) game into smaller reachability-persistence games. Following the partitioning, another synthesis problem is formulated for composing the strategies from the decomposed reachability games. The formulation guarantees that composing the synthesized controllers ensures satisfaction of the given GR(1) property. Experiments with robot planning problems demonstrate good performance of the approach
The influence of knee rigidity on balance corrections: a comparison with responses of cerebellar ataxia patients
Knee rigidity due to aging or disease is associated with falls. A causal relationship between instability and knee rigidity has not been established. Here, we examined whether insufficient knee movement due to knee rigidity could underlie poor balance control in patients. We addressed this by examining the effect of artificially "lockingâ the knees on balance control in 18 healthy subjects, tested with and without individually fitted knee casts on both legs. Subjects were exposed to sudden rotations of a support surface in six different directions. The primary outcome measure was body centre of mass (COM) movement, and secondary outcome measures included biomechanical responses of the legs, pelvis and trunk. Knee casts caused increased backward COM movement for backward perturbations and decreased vertical COM movement for forward perturbations, and caused little change in lateral COM movement. At the ankles, dorsiflexion was reduced for backward perturbations. With knee casts, there was less uphill hip flexion and more downhill hip flexion. A major difference with knee casts was a reversed pelvis pitch movement and an increased forward trunk motion. These alterations in pitch movement strategies and COM displacements were similar to those we have observed previously in patients with knee rigidity, specifically those with spinocerebellar ataxia (SCA). Pelvis roll and uphill arm abduction were also increased with the casts. This roll movement strategy and minor changes in lateral COM movement were not similar to observations in patients. We conclude that artificial knee rigidity increases instability, as reflected by greater posterior COM displacement following support surface tilts. Healthy controls with knee casts used a pitch movement strategy similar to that of SCA patients to offset their lack of knee movement in regaining balance following multidirectional perturbations. This similarity suggests that reduced knee movements due to knee rigidity may contribute to sagittal plane postural instability in SCA patients and possibly in other patient groups. However in the roll plane, healthy controls rapidly compensate by adjusting arm movements and hip flexion to offset the effects of knee rigidit
Inhibition of alpha7 nicotinic receptors in the ventral hippocampus selectively attenuates reinstatement of morphineâconditioned place preference and associated changes in AMPA receptor binding
Recurrent relapse is a major problem in treating opiate addiction. Pavlovian conditioning plays a role in recurrent relapse whereby exposure to cues learned during drug intake can precipitate relapse to drug taking. α7 nicotinic acetylcholine receptors (nAChRs) have been implicated in attentional aspects of cognition and mechanisms of learning and memory. In this study we have investigated the role of α7 nAChRs in morphineâconditioned place preference (morphineâCPP). CPP provides a model of associative learning that is pertinent to associative aspects of drug dependence. The α7 nAChR antagonist methyllycaconitine (MLA; 4 mg/kg s.c.) had no effect on the acquisition, maintenance, reconsolidation or extinction of morphineâCPP but selectively attenuated morphineâprimed reinstatement of CPP, in both mice and rats. Reinstatement of morphineâCPP in mice was accompanied by a selective increase in [3H]âAMPA binding (but not in [3H]âMK801 binding) in the ventral hippocampus that was prevented by prior treatment with MLA. Administration of MLA (6.7 ÎŒg) directly into the ventral hippocampus of rats prior to a systemic priming dose of morphine abolished reinstatement of morphineâCPP, whereas MLA delivered into the dorsal hippocampus or prefrontal cortex was without effect. These results suggest that α7 nAChRs in the ventral hippocampus play a specific role in the retrieval of associative drug memories following a period of extinction, making them potential targets for the prevention of relapse
Impregnation of bone chips with alendronate and cefazolin, combined with demineralized bone matrix: a bone chamber study in goats
Contains fulltext :
108265.pdf (publisher's version ) (Open Access)BACKGROUND: Bone grafts from bone banks might be mixed with bisphosphonates to inhibit the osteoclastic response. This inhibition prevents the osteoclasts to resorb the allograft bone before new bone has been formed by the osteoblasts, which might prevent instability. Since bisphosphonates may not only inhibit osteoclasts, but also osteoblasts and thus bone formation, we studied different bisphosphonate concentrations combined with allograft bone. We investigated whether locally applied alendronate has an optimum dose with respect to bone resorption and formation. Further, we questioned whether the addition of demineralized bone matrix (DBM), would stimulate bone formation. Finally, we studied the effect of high levels of antibiotics on bone allograft healing, since mixing allograft bone with antibiotics might reduce the infection risk. METHODS: 25 goats received eight bone conduction chambers in the cortical bone of the proximal medial tibia. Five concentrations of alendronate (0, 0.5 mg/mL, 1 mg/mL, 2 mg/mL, and 10 mg/mL) were tested in combination with allograft bone and supplemented with cefazolin (200 mug/mL). Allograft not supplemented with alendronate and cefazolin served as control. In addition, allograft mixed with demineralized bone matrix, with and without alendronate, was tested. After 12 weeks, graft bone area and new bone area were determined with manual point counting. RESULTS: Graft resorption decreased significantly (p < 0.001) with increasing alendronate concentration. The area of new bone in the 1 mg/mL alendronate group was significantly (p = 0.002) higher when compared to the 10 mg/mL group. No differences could be observed between the group without alendronate, but with demineralized bone, and the control groups. CONCLUSIONS: A dose-response relationship for local application of alendronate has been shown in this study. Most new bone was present at 1 mg/mL alendronate. Local application of cefazolin had no effect on bone remodelling
- âŠ