7,004 research outputs found
How Barred is the NIR Nearby Universe? An analysis using 2MASS
We determine a firm lower limit to the bar fraction of 0.58 in the nearby
universe using J+H+Ks-band images for 134 spirals from 2MASS. With a mean
deprojected semi-major axis of 5.1 kpc, and a mean deprojected ellipticity of
0.45 this local bar sample lays the ground work for studies on bar formation
and evolution at high redshift.Comment: In the proceedings "Penetrating Bars through Masks of Cosmic Dust:
The Hubble Tuning Fork strikes a New Note
A Dust-Penetrated Classification Scheme for Bars as Inferred from their Gravitational Force Fields
The division of galaxies into ``barred'' (SB) and ``normal'' (S) spirals is a
fundamental aspect of the Hubble galaxy classification system. This ``tuning
fork'' view was revised by de Vaucouleurs, whose classification volume
recognized apparent ``bar strength'' (SA, SAB, SB) as a continuous property of
galaxies called the ``family''. However, the SA, SAB, and SB families are
purely visual judgments that can have little bearing on the actual bar strength
in a given galaxy. Until very recently, published bar judgments were based
exclusively on blue light images, where internal extinction or star formation
can either mask a bar completely or give the false impression of a bar in a
nonbarred galaxy. Near-infrared camera arrays, which principally trace the old
stellar populations in both normal and barred galaxies, now facilitate a
quantification of bar strength in terms of their gravitational potentials and
force fields. In this paper, we show that the maximum value, Qb, of the ratio
of the tangential force to the mean radial force is a quantitative measure of
the strength of a bar. Qb does not measure bar ellipticity or bar shape, but
rather depends on the actual forcing due to the bar embedded in its disk. We
show that a wide range of true bar strengths characterizes the category ``SB'',
while de Vaucouleurs category ``SAB'' corresponds to a much narrower range of
bar strengths. We present Qb values for 36 galaxies, and we incorporate our bar
classes into a dust-penetrated classification system for spiral galaxies.Comment: Accepted for publication in the Astrophysical Journal (LaTex, 30
pages + 3 figures); Figs. 1 and 3 are in color and are also available at
http://bama.ua.edu/~rbuta/bars
New physics, the cosmic ray spectrum knee, and cross section measurements
We explore the possibility that a new physics interaction can provide an
explanation for the knee just above GeV in the cosmic ray spectrum. We
model the new physics modifications to the total proton-proton cross section
with an incoherent term that allows for missing energy above the scale of new
physics. We add the constraint that the new physics must also be consistent
with published cross section measurements, using cosmic ray observations,
an order of magnitude and more above the knee. We find that the rise in cross
section required at energies above the knee is radical. The increase in cross
section suggests that it may be more appropriate to treat the scattering
process in the black disc limit at such high energies. In this case there may
be no clean separation between the standard model and new physics contributions
to the total cross section. We model the missing energy in this limit and find
a good fit to the Tibet III cosmic ray flux data. We comment on testing the new
physics proposal for the cosmic ray knee at the Large Hadron Collider.Comment: 17 pages, 4 figure
Dust-penetrated morphology in the high-redshift universe: clues from NGC 922
Results from the Hubble Deep Field (HDF) North and South show a large
percentage of high-redshift galaxies whose appearance falls outside traditional
classification systems. The nature of these objects is poorly understood, but
sub-mm observations indicate that at least some of these systems are heavily
obscured (Sanders 2000). This raises the intriguing possibility that a
physically meaningful classification system for high-redshift galaxies might be
more easily devised at rest-frame infrared wavelengths, rather than in the
optical regime. Practical realization of this idea will become possible with
the advent of the Next Generation Space Telescope (NGST). In order to explore
the capability of NGST for undertaking such science, we present NASA-IRTF and
SCUBA observations of NGC 922, a chaotic system in our local Universe which
bears a striking resemblance to objects such as HDF 2-86 (z=0.749) in the HDF
North. If objects such as NGC 922 are common at high-redshifts, then this
galaxy may serve as a local morphological `Rosetta stone' bridging low and
high-redshift populations. In this paper we demonstrate that quantitative
measures of galactic structure are recoverable in the rest-frame infrared for
NGC 922 seen at high redshifts using NGST, by simulating the appearance of this
galaxy at redshifts z=0.7 and z=1.2 in rest-frame K'. Our results suggest that
the capability of efficiently exploring the rest-wavelength IR morphology of
high-z galaxies should probably be a key factor in deciding the final choice of
instruments for the NGST.Comment: 7 pages, 12 Figures. Accepted for publication in A&A. Better version
of the figures can be found at http://www.inaoep.mx/~puerari/ngs
Dynamic concentration of motors in microtubule arrays
We present experimental and theoretical studies of the dynamics of molecular
motors in microtubule arrays and asters. By solving a convection-diffusion
equation we find that the density profile of motors in a two-dimensional aster
is characterized by continuously varying exponents. Simulations are used to
verify the assumptions of the continuum model. We observe the concentration
profiles of kinesin moving in quasi two-dimensional artificial asters by
fluorescent microscopy and compare with our theoretical results.Comment: 4pages, 4 figures revte
Bose Metals and Insulators on Multi-Leg Ladders with Ring Exchange
We establish compelling evidence for the existence of new
quasi-one-dimensional descendants of the d-wave Bose liquid (DBL), an exotic
two-dimensional quantum phase of uncondensed itinerant bosons characterized by
surfaces of gapless excitations in momentum space [O. I. Motrunich and M. P. A.
Fisher, Phys. Rev. B {\bf 75}, 235116 (2007)]. In particular, motivated by a
strong-coupling analysis of the gauge theory for the DBL, we study a model of
hard-core bosons moving on the -leg square ladder with frustrating four-site
ring exchange. Here, we focus on four- and three-leg systems where we have
identified two novel phases: a compressible gapless Bose metal on the four-leg
ladder and an incompressible gapless Mott insulator on the three-leg ladder.
The former is conducting along the ladder and has five gapless modes, one more
than the number of legs. This represents a significant step forward in
establishing the potential stability of the DBL in two dimensions. The latter,
on the other hand, is a fundamentally quasi-one-dimensional phase that is
insulating along the ladder but has two gapless modes and incommensurate power
law transverse density-density correlations. In both cases, we can understand
the nature of the phase using slave-particle-inspired variational wave
functions consisting of a product of two distinct Slater determinants, the
properties of which compare impressively well to a density matrix
renormalization group solution of the model Hamiltonian. Stability arguments
are made in favor of both quantum phases by accessing the universal low-energy
physics with a bosonization analysis of the appropriate quasi-1D gauge theory.
We will briefly discuss the potential relevance of these findings to
high-temperature superconductors, cold atomic gases, and frustrated quantum
magnets.Comment: 33 pages, 16 figures; this is the print version, only very minor
changes from v
Curvature Dependence of Surface Free Energy of Liquid Drops and Bubbles: A Simulation Study
We study the excess free energy due to phase coexistence of fluids by Monte
Carlo simulations using successive umbrella sampling in finite LxLxL boxes with
periodic boundary conditions. Both the vapor-liquid phase coexistence of a
simple Lennard-Jones fluid and the coexistence between A-rich and B-rich phases
of a symmetric binary (AB) Lennard-Jones mixture are studied, varying the
density rho in the simple fluid or the relative concentration x_A of A in the
binary mixture, respectively. The character of phase coexistence changes from a
spherical droplet (or bubble) of the minority phase (near the coexistence
curve) to a cylindrical droplet (or bubble) and finally (in the center of the
miscibility gap) to a slab-like configuration of two parallel flat interfaces.
Extending the analysis of M. Schrader, P. Virnau, and K. Binder [Phys. Rev. E
79, 061104 (2009)], we extract the surface free energy gamma (R) of both
spherical and cylindrical droplets and bubbles in the vapor-liquid case, and
present evidence that for R -> Infinity the leading order (Tolman) correction
for droplets has sign opposite to the case of bubbles, consistent with the
Tolman length being independent on the sign of curvature. For the symmetric
binary mixture the expected non-existence of the Tolman length is confirmed. In
all cases {and for a range of radii} R relevant for nucleation theory, gamma(R)
deviates strongly from gamma (Infinity) which can be accounted for by a term of
order gamma(Infinity)/gamma(R)-1 ~ 1/R^2. Our results for the simple
Lennard-Jones fluid are also compared to results from density functional theory
and we find qualitative agreement in the behavior of gamma(R) as well as in the
sign and magnitude of the Tolman length.Comment: 25 pages, submitted to J. Chem. Phy
Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch
The bacterial flagellar switch that controls the direction of flagellar rotation during chemotaxis has a highly cooperative response. This has previously been understood in terms of the classic two-state, concerted model of allosteric regulation. Here, we used high-resolution optical microscopy to observe switching of single motors and uncover the stochastic multistate nature of the switch. Our observations are in detailed quantitative agreement with a recent general model of allosteric cooperativity that exhibits conformational spread—the stochastic growth and shrinkage of domains of adjacent subunits sharing a particular conformational state. We expect that conformational spread will be important in explaining cooperativity in other large signaling complexes
- …