9,713 research outputs found

    Conjugate photoelectron impact ionization

    Get PDF
    Exchange of photoelectrons between magnetically conjugate parts of ionospher

    New physics, the cosmic ray spectrum knee, and pppp cross section measurements

    Full text link
    We explore the possibility that a new physics interaction can provide an explanation for the knee just above 10610^6 GeV in the cosmic ray spectrum. We model the new physics modifications to the total proton-proton cross section with an incoherent term that allows for missing energy above the scale of new physics. We add the constraint that the new physics must also be consistent with published pppp cross section measurements, using cosmic ray observations, an order of magnitude and more above the knee. We find that the rise in cross section required at energies above the knee is radical. The increase in cross section suggests that it may be more appropriate to treat the scattering process in the black disc limit at such high energies. In this case there may be no clean separation between the standard model and new physics contributions to the total cross section. We model the missing energy in this limit and find a good fit to the Tibet III cosmic ray flux data. We comment on testing the new physics proposal for the cosmic ray knee at the Large Hadron Collider.Comment: 17 pages, 4 figure

    Effect of a pre-milking teat foam and a liner disinfectant on the presence of mesophilic and (proteolytic) psychrotrophic bacteria prior to milking

    Get PDF
    Contamination of raw milk by psychrotrophs can lead to the production of heat-resistant proteases and subsequent spoilage of UHT milk. Therefore, this research communication evaluated the effect of a pre-milking teat disinfectant (active components: L-(+)-lactic acid and salicylic acid) and a liner disinfectant (active components: peracetic acid and hydrogen peroxide) on the number of mesophilic and (proteolytic) psychrotrophic bacteria prior to milking. The teat orifices of 10 cows were sampled using a swabbing procedure before and after treatment with a pre-milking teat disinfectant on six subsequent days. On the teat orifices, there was a small but statistically significant decrease in the psychrotrophic bacterial counts between pre and post dipping. No differences were observed for the mesophilic bacterial counts and proteolytic active counts. Liners were also sampled using swabs pre and post disinfection. No statistically significant decrease in the bacterial counts was observed post liner disinfection, although there was a numerical decrease. Sixty-two percent of the proteolytic psychrotrophs were pseudomonads: 16.5% of which were P. fragi, 14.3% P. lundensis, 10.0% P. fluorescens and 2.9% P. putida. Trinitrobenzenesulfonic acid (TNBS) analysis revealed a wide variety in proteolytic activity (from 0 to 55 mu mol glycine/ml milk) and the presence of high producers. It can be concluded that there was only a minor effect of teat and liner disinfection on the psychrotrophic bacterial counts indicating that the measures presented did not result in a reduction of the targeted bacteria on teat orifices and liners

    A Dust-Penetrated Classification Scheme for Bars as Inferred from their Gravitational Force Fields

    Get PDF
    The division of galaxies into ``barred'' (SB) and ``normal'' (S) spirals is a fundamental aspect of the Hubble galaxy classification system. This ``tuning fork'' view was revised by de Vaucouleurs, whose classification volume recognized apparent ``bar strength'' (SA, SAB, SB) as a continuous property of galaxies called the ``family''. However, the SA, SAB, and SB families are purely visual judgments that can have little bearing on the actual bar strength in a given galaxy. Until very recently, published bar judgments were based exclusively on blue light images, where internal extinction or star formation can either mask a bar completely or give the false impression of a bar in a nonbarred galaxy. Near-infrared camera arrays, which principally trace the old stellar populations in both normal and barred galaxies, now facilitate a quantification of bar strength in terms of their gravitational potentials and force fields. In this paper, we show that the maximum value, Qb, of the ratio of the tangential force to the mean radial force is a quantitative measure of the strength of a bar. Qb does not measure bar ellipticity or bar shape, but rather depends on the actual forcing due to the bar embedded in its disk. We show that a wide range of true bar strengths characterizes the category ``SB'', while de Vaucouleurs category ``SAB'' corresponds to a much narrower range of bar strengths. We present Qb values for 36 galaxies, and we incorporate our bar classes into a dust-penetrated classification system for spiral galaxies.Comment: Accepted for publication in the Astrophysical Journal (LaTex, 30 pages + 3 figures); Figs. 1 and 3 are in color and are also available at http://bama.ua.edu/~rbuta/bars

    Morphological Classification of Galaxies by Shapelet Decomposition in the Sloan Digital Sky Survey II: Multiwavelength Classification

    Full text link
    We describe the application of the `shapelet' linear decomposition of galaxy images to multi-wavelength morphological classification using the u,g,r,i,u,g,r,i, and zz-band images of 1519 galaxies from the Sloan Digital Sky Survey. We utilize elliptical shapelets to remove to first-order the effect of inclination on morphology. After decomposing the galaxies we perform a principal component analysis on the shapelet coefficients to reduce the dimensionality of the spectral morphological parameter space. We give a description of each of the first ten principal component's contribution to a galaxy's spectral morphology. We find that galaxies of different broad Hubble type separate cleanly in the principal component space. We apply a mixture of Gaussians model to the 2-dimensional space spanned by the first two principal components and use the results as a basis for classification. Using the mixture model, we separate galaxies into three classes and give a description of each class's physical and morphological properties. We find that the two dominant mixture model classes correspond to early and late type galaxies, respectively. The third class has, on average, a blue, extended core surrounded by a faint red halo, and typically exhibits some asymmetry. We compare our method to a simple cut on uru-r color and find the shapelet method to be superior in separating galaxies. Furthermore, we find evidence that the ur=2.22u-r=2.22 decision boundary may not be optimal for separation between early and late type galaxies, and suggest that the optimal cut may be ur2.4u-r \sim 2.4.Comment: 42 pages, 18 figs, revised version in press at AJ. Some modification to the technique, more discussion, addition/deletion/modification of several figures, color figures have been added. A high resolution version may be obtained at http://bllac.as.arizona.edu/~bkelly/shapelets/shapelets_ugriz.ps.g

    Low frequency m=1 normal mode oscillations of a self-gravitating disc

    Full text link
    A continuous system such as a galactic disc is shown to be well approximated by an N-ring differentially rotating self-gravitating system. Lowest order (m=1) non-axisymmetric features such as lopsidedness and warps are global in nature and quite common in the discs of spiral galaxies. Apparently these two features of the galactic discs have been treated like two completely disjoint phenomena. The present analysis based on an eigenvalue approach brings out clearly that these two features are fundamentally similar in nature and they are shown to be very Low frequency Normal Mode (LNM) oscillations manifested in different symmetry planes of the galactic disc. Our analysis also show that these features are actually long-lived oscillating pattern of the N-ring self-gravitating system.Comment: 5 figures. Accepted for publication in MNRAS Letter

    Mid-Infrared Galaxy Morphology Along the Hubble Sequence

    Full text link
    The mid-infrared emission from 18 nearby galaxies imaged with the IRAC instrument on Spitzer Space Telescope samples the spatial distributions of the reddening-free stellar photospheric emission and the warm dust in the ISM. These two components provide a new framework for galaxy morphological classification, in which the presence of spiral arms and their emission strength relative to the starlight can be measured directly and with high contrast. Four mid-infrared classification methods are explored, three of which are based on quantitative global parameters (colors, bulge-to-disk ratio) similar to those used in the past for optical studies; in this limited sample, all correlate well with traditional B-band classification. We suggest reasons why infrared classification may be superior to optical classification.Comment: ApJS (in press), Spitzer Space Telescope Special Issue; 13 pages, LaTeX (or Latex, etc); Figure 1ab is large, color plate; full-resolution plates in .pdf format available at http://cfa-www.harvard.edu/irac/publications
    corecore