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The exchange of photoelectrons between ionospheres i n  a 

matter  of minutes ra ther  than a t  t h e  slow ambipolar speed i s  

discussed. It i s  shown t h a t  t h e  e lectron density may be a f fec ted  

by secondary processes resu l t ing  from t h e  conjugate photoelectron 

f l ux  but not by the  f l u x  i t s e l f .  

The f l ux  spectrum of conjugate photoelectrons throughout 

the  day a t  the  so l s t i ce s  f o r  minimum so la r  a c t i v i t y  i s  calculated 

f o r  55"N. geographic l a t i t u d e  over Europe, using a method pre- 

viously employed by NISBET. Summer escaping f l ux  values range up 

12 -2 - 1 
t o  9 x 10 electrons  m sec and winter values t o  5 x 10 

12 

-2 -1 
electrons m sec . Compared a t  spec i f ic  so la r  zenith angles t he  

computed values a r e  i n  good agreement with recent s a t e l l i t e  measure- 

ments. Approximately ha l f  of t h i s  f l ux  i s  l o s t  by Coulmb co l l i s ions  

along the  f i e l d  l i n e  path. The resu l t ing  f l u x  arr iving a t  t he  l o c a l  

ionosphere produces ionizat ion by i n e l a s t i c  co l l i s ions  i n  the  

atmosphere. This addi t ional  ionizat ion i s  about 3% of t h e  ionizat ion 

from loca l  processes a t  summer noon and 48% a t  winter noon. During 

winter nighttime t h i s  conjugate photoelectron ionizat ion can be 

signficant fo r  several  hours. 



Although small i n  magnitude, t h i s  addit ional ionization should 

systematically modify the summer t o t a l  electron content depending on 

geographic location. The large seasonal differences i n  t he  r e l a t i v e  

impact ionization may explain i n  pa r t  the  F-layer seasonal anomaly. 

This source may be important f o r  maintaining and causing enhancements 

i n  the  winter nighttime ionosphere. 



1. INTRODUCTION 

The exchange of photoelectrons between magnetically conjugate 

par t s  of the ionosphere has been successfully invoked i n  explaining 

F-layer electron heating (e. g. HANSON, 1963 ; CARLSON, 1966 ; EVANS, 

1968; NISBET, 1968; and NAGY, -- e t  a l . ,  1969). Such exchange should 

a l so  influence the electron density i t s e l f  (the prof i le  as well  as 

the t o t a l  content). This poss ib i l i t y  has not a t t racted much attention 

so f a r  although LISZK4 (1967) conjectured tha t  t h i s  exchange may 

e q l a i n  the forenoon peaks observed i n  the summer (solar minimum) 

t o t a l  electron content a t  high la t i tudes.  

In Section 2 several mechanisms f o r  the exchange of photo- 

electrons are discussed. It i s  concluded tha t  the  photoelectron f lux  

i t s e l f  does not affect the electron density but tha t  the  secondary 

effects  of heating, excitation and impact ionization may be important 

(section 3). In t h i s  paper we discuss a model calculation t o  deter- 

mine the  additional ionization r a t e  due t o  impact ionization by 

photoelectrons from the conjugate ionosphere. 

The numerical computations proceed by f i r s t  obtaining a 

photoelectron production r a t e  energy spectrum i n  a multicomponent 

atmosphere a t  different local  times and al t i tudes for  solar  minimum 



summer and winter (section 4). Using the method of NLSBET (1968) 

the photoelectron escaping f lux  energy spectrum i s  obtained 

(section 5) ;  e l a s t i c  and ine la s t i c  co l l i s ions  with neutrals and 

Coulomb col l is ions with thermal electrons a r e  included. Assuming 

only Coulomb col l is ions along the f i e l d  l i n e  path (above 600 km) 

between the magnetically conjugate ionopsheres, the arriving photo- 

electron f lux  energy spectrum i s  evaluated (section 6) .  In Section 7 

the resul t ing impact ionization i s  calculated and found t o  be s ignif-  

icant  compared t o  the ionization from en t i r e ly  loca l  processes. Some 

possible improvements on the computational model are discussed i n  

Section 8. Finally, several expected consequences of t h i s  additional 

impact ionization on the diurnal variation of the electron density 

p ro f i l e  and of the  t o t a l  electron content a re  pointed out (section 9 ) .  



2. R3OTOEL;ECTRON DIFF'U'SION MECHANISM 

S a t e l l i t e  observations of photoelectron f luxes  (e. g. GALPERIN 

and MULXIRCHIK, 1967, and RAO and DONNL;EY, 1969) and observations of 

increases i n  e lect ron temperature before l o c a l  sunrise (e. g. CAIILSON, 

1966) and op t i ca l  l i n e  emissions i n  twi l ight  (e. g. BRQADFOOT and 

HUNTEN, 1966) indicate  t h a t  photoelectrons escape from the  ionosphere 

and t r a v e l  between conjugate regions of t he  ionosphere i n  a matter of 

minutes. In  order t o  properly in te rpre t  t he  e f f e c t s  of these conju- 

ga te  photoelectrons t he  photoelectron dif fusion mechanism must be 

understood. 

Since quasineutra l i ty  i s  va l id  throughout t he  regions con- 

cerned, an increase of electron density anywhere due t o  t he  in f lux  

of photoelectrons must be accompanied by a corresponding increase 

of ion density. Otherwise, the  conjugate ionosphere would become 

charged i n  such a way t h a t  t he  photoelectron f lux  would be stopped 

by a retarding po ten t ia l  which i s  apparently not observed. The 

ambipolar di f fusion process by which ions and electrons  d i f fuse  

together along f i e l d  l i n e s  between conjugate ionospheres has been 

studied theore t ica l ly  by KOHL (1966) and CUMMACK (1968). They find, 

however, t h a t  the  dif fusion time from one hemisphere t o  t h e  other 



i s  several  hours, and t h a t  the  f l ux  i s  probably too low t o  be of any 

grea t  importance. In fac t ,  because of t h e  long dif fusion time any 

magnetospheric convection w i l l  cause a large displacement of the  

dif fusing pa r t i c l e s  from the  i n i t i a l  magnetic f l ux  tube. 

There a r e  two other ways i n  which quasineutra l i ty  can be 

maintained. F i r s t ,  there  may be an ion ic  Pedersen current i n  t he  

lower ionosphere. The magnitude of t h i s  current would correspond 

t o  an ion f l ux  which i s  equal t o  t h e  conjugate photoelectron f lux;  

t h e  ions would d i f fuse  across f i e l d  l i n e s  a t  low a l t i t udes  and 

electrons  would t r a v e l  along the  f i e l d  l i n e  from the  conjugate point .  

Then photoelectrons can t r a v e l  between conjugate ionospheres i n  a 

few minutes ra ther  than a t  t he  slow ambipolar speed, and the  f l ux  

i t s e l f  gives a net  contribution t o  t he  e lectron density a t  t he  

receiving ionosphere. 

The second way of preserving quasineutra l i ty  i s  by a re turn 

dif fusion f l ux  of thermal electrons (many more a t  lower veloci ty)  

along the  same magnetic f i e l d  l i n e  (cf .  RISHBETH, 1968). This ex- 

change leads t o  a red is t r ibu t ion  of electron energies between 

conjugate ionospheres, but no net  displacement of ionizat ion occurs 

so t h a t  t he  electron density i s  not changed d i r e c t l y  by t h i s  f lux.  

In both cases t h e  photoelectrons can a l so  cause impact ionization, 

excitat ion,  and heating. Of these  two mechanisms, the  process 

requiring t h e  lowest driving po ten t ia l  w i l l  dominate. This po ten t ia l  

must a l so  be small compared with t yp i ca l  conjugate photoelectron 

energies i f  t he  conjugate photoelectron f l ux  i s  not t o  be inhibited.  



A Pedersen current requ.ires a voltage of the order of 

ecpl 1 
1 2  v p = q q z  = ~ Y J ~ * L / Z ~  

where e = elementary charge 

cp = conjugate photoelectron f lux  per unit  area 

1 = longitudinal extent of conjugate photoelectron f lux  
1 

1 = l a t i t ud ina l  extent of conjugate photoelectron f lux  2 

L = effect ive distance i n  the ionosphere between the  

conjugate points 

C = height integrated Pedersen conductivity 
P 

2 4 - 1 
With p = 1012 electrons/m see, L = 10 km and Z = 0.5 ohm 

P 

(BOSTR~M, 1964) we get 

V (vol ts)  - 312 (meters) 
P 

Since 1 i s  a t  l eas t  of the order of a hundred kilometers, 2 
5 V would have t o  be of the order of 10 vol ts  or more i n  order t o  drive 

P 

an ion f lux  i n  the l o w  ionosphere comparable t o  the photoelectron 

f lux along the  geomagnetic f i e l d  l ines .  Hence, t h i s  mechanism 

cannot possibly operate. 

The p o t e n t i d  necessary t o  drive a return f lux  of thermal 

electrons along the magnetic f i e l d  l i n e  i s  



V I I  = ecpLII/oII w 0.5 vo l t s  

where Lll = lo5 lon i s  the  length of t he  geomagnetic f i e l d  l i n e  

-1 -1 and oil = 30 ohm m (BOSTR~M, 1964). Consequently, only a small 

po t en t i a l  w i l l  cause a neutra l iz ing re turn f l u x  of thermal electrons.  

This mechanism of exchange between photoelectron and thermal e lect ron 

fluxes seems the  most l i k e l y  t o  operate. 

In discussing t he  time scales  of the  exchange mechanism, the  

concept of a two-component e lect ron gas, consis t ing of thermal 

e lect rons  and photoelectrons can be used. The photoelectrons have 

energies from a few eV t o  more than 60 eV. For such a model, one 

can use generalized ambipolar-diffusion equations t o  ca lcu la te  t h e  

time scales  of t h e  exchange. The ambipolar e l e c t r i c  f i e l d  (which 

depends on a combination of di f fusion coeff ic ients ,  mobi l i t ies  and 

dens i t i es  of t h e  two electron components) i s  weak enough t o  influence 

t he  photoelectrons only a l i t t l e  but t he  thermal electrons very much. 

The end r e s u l t  i s  t h a t  t h e  photoelectrons are near ly  unaffected by 

the  quasineutra l i ty  constra int .  Therefore, the  charac te r i s t i c  time 

f o r  t h e i r  exchange between conjugate ionospheres i s  of the  order of 

minutes only. The dif fusion of t he  thermal e lect ron population con- 

s i s t s  of two par t s .  One has a f l ux  which i s  p rec i se ly  equal and 

opposite t o  the  photoelectron dif fusion flux, and the  other i s  coupled 

w i t h  t he  mobility of t he  ions and has e s sen t i a l l y  t h e  ordinary ambi- 

polar  character with the  correspondingly long time scale.  



3. SECONDARY PROCESSES AFFECTING THE ELECTRON DENSITY 

The conjugate photoelectrons do not contribute t o  t he  e lectron 

density d i r e c t l y  because t h e i r  f l ux  i s  p rec i se ly  cancelled by a 

re turn f l ux  of thermal electrons.  However, t h i s  photoelectron f l u x  

causes secondary processes which can change t h e  electron density: 

heating, impact ionizat ion and excitat ion.  The heating influences 

t he  l o s s  processes. The dissocia t ive  recmbinat ion coeff ic ient  

appropriate f o r  low a l t i t udes  seems t o  decrease with temperature (see 

SWIDER, 1965), whereas t h e  ion-atom interchange coeff ic ient  appro- 

p r i a t e  f o r  high a l t i t udes  increases with e lectron temperature (see  

THOMAS, 1968). Most of t he  l o s s  occurs a t  low a l t i t udes  where t h e  

heating i s  small and i s  l i k e l y  t o  be unimportant. As b e t t e r  data  

on t h e  l o s s  r a t e  coef f ic ien ts  and on the  atmospheric parameters become 

available t h i s  heating ef  f e e t  should be checked quant i ta t ively .  

Impact ionizat ion represents an addit ion t o  the  l o c a l  photo- 

ionization and impact ionization from l o c a l l y  produced photoelectrons. 

The magnitude of t h i s  addit ional source i s  calculated i n  the  following 

sections and compared t o  t he  l oca l  sources. 

Excitation processes are important f o r  explaining the  op t i ca l  

emissions. They a re  a l so  important i n  calculat ing t h e  conjugate 

photoelectron impact ionization because t h e  exci ta t ion processes 

compete with t h e  impact ionization processes. 



4. mOTOELECTRON PRODUCTIOnr SPEC TXUM 

Tu order t o  evaluate the  magnitude of impact ionizat ion by 

photoelectrons from the  conjugate ionosphere and the  diurnal, the  

seasonal and the  a l t i t u d i n a l  var ia t ions  of t h i s  magnitude, model 

calculat ions  have been car r ied  out. Calculations are made between 

l o c a l  sunrise and sunset f o r  so la r  minimum summer and winter. 4 

geographic locat ion of 55" N l a t i t u d e  over Europe i s  assumed giving 

a geomagnetic l a t i t u d e  of 52" and a conjugate point a t  46" S geo- 

g ~ a p h i c  l a t i t ude .  

The photoelectron production r a t e  spectrum calculation follows 

t h a t  of TOHMATSU (1965). The production r a t e  a t  20 km in te rva l s  

between 100 km and 600 km i s  calculated f o r  each ion ic  species by 

t h e  r e l a t i on  

where T i s  t h e  op t i ca l  depth given by 



where Q i s  t h e  photoionization cross-section and Q t he  photo- 
ion ab s 

absorption cross-section fo r  species X a t  wavelength X. F i s  the 
0 

photon f l u x  a t  the  top of the  ionosphere a t  wavelength A.  These 

quant i t i es  a r e  taken from HINTEREGGER, e t  a l .  (1965) f o r  species -- 
0, 02, N2 and a wavelength range of 665 A t o  150 A. DiurnaL neut ra l  

atmosphere models n(X) are  taken from HARRIS and PRIESTER (1962) f o r  

s o l m  minimum (S = 70 model). It i s  assumed tha t  these models apply 

a t  the  l a t i t udes  of i n t e r e s t  during both summer and winter. The 

in t eg ra l  i n  equation (5) i s  replaced by t h e  following approximation: 

Sn(x,h)ds = n(x,h)~(X,h)  sec x (6) 

where H i s  t he  scale  height f o r  specie X a t  a l t i t ude  h given i n  the  

atmosphere models and X i s  the  so la r  zenith angle which depends on 

the  season and loca l  time. 

Equation (4) then gives the  production r a t e  a t  a given so la r  

zenith angle and a l t i t ude  for a given species and wavelength. The 

photoelectron production r a t e  spectrum i s  obtained by multiplying 

t h i s  production r a t e  by the  probabi l i ty  of ionization t o  a cer ta in  

e lectronic  s t a t e  f o r  a given species and wavelength. This resul t ing 

production r a t e  i s  added t o  the r a t e  i n  t he  par t icu la r  2 eV in t e rva l  

from 0 t o  100 eV which brackets the  value of the  excess energy t rans-  

ferred t o  the  photoelectrons. Values f o r  the  ionization probabi l i t i es  

and excess energy transferred t o  the photoelectrons are  taken from 

TOHMATSU, e t  al. (1965). - -  



Examples of the height integrated (100 km - 600 km) primary 

photoelectron production r a t e  spectra up t o  80 eV are shown for 

summer and winter noon a t  the conjugate ionosphere i n  Figure 1. 

Note tha t  these curves exhibit a character is t ic  maximum between 

40 eV and 60 eV and tha t  the  spectrum f a l l s  of f  sharply above 60 eV. 

Consequently, photoelectron energies up t o  62 eV are considered i n  

f'urther calculations. 

Electrons axe a l so  produced from impact ionization by the 

primary photoelectrons. This secondary spectrum i s  obtained a s  a 

r e su l t  of the calculation i n  the next section. In general, these 

secondary photoelectrons a re  a t  low energies and increase the t o t a l  

photoelectron production (summed over a l t i t ude  and energy) by a t  

most 10%. 



5. ESCAPING PlIOTOELECTRON FLUXES 

In order t o  obtain t he  photoelectron f l ux  spectrum escaping 

t h e  conjugate ionosphere from the  photoelectron production r a t e  

spectrum, t h e  method employed by NISBET (1968) i s  used. 

For each 2 eV photoelectron energy i n t e r v a l  centered on 1 eV 

t o  61 eV and f o r  each a l t i t u d e  (20 km intervals ,  100 lan t o  600 km) 

t he  continuity equation i s  solved f o r  t he  photoelectron number 

density: 

where 

= the  primary photoelectron production r a t e  f o r  a 

given a l t i t u d e  a t  energy E 

the  gain of photoelectrons a t  energy E from 

higher energies due t o  i n e l a s t i c  co l l i s ions  

with neu t ra l  par t i c les .  This term includes 

the secondary ionization due t o  primary 

photoelectron impact. 



t he  gain of photoelectrons a t  energy E from the next 

higher energy in t e rva l  E + 2 due t o  e l a s t i c  (coulomb) 

scat ter ing with the ambient thermal electrons (BUTLER 

a d  BUCKINGHAM, 1962 ) . 
d 

div(N v) = div(% ) = the  gain or  l o s s  of photoelectrons (10) E E 

a t  energy E due t o  diffusion i n  a l t i tude .  

t he  l o s s  probabi l i ty  of photoelectrons t o  lower 

e n e ~ g i e s  due t o  i ne l a s t i c  co l l i s ions  with neutral  

t he  loss  probabi l i ty  of photoelectrons t o  the  

next lower energy l eve l  E - 2 due t o  e l a s t i c  

(coulomb ) col l i s ions  with ambient thermal electrons 

(BUTLER a d  BUCKINGHAM, 1962). 

e F; = z v B o n(x) 
X E E E  

the  probabi l i ty  of photoelectrons t o  make one 

e l a s t i c  co l l i s ion  with neutral  pa r t i c l e s  and then 

escape from the ionosphere without fur ther  col l is ions .  

This probabi l i ty  multiplied by the photoelectron 

number density and summed over a l l  a l t i t udes  gives 

the  photoelectron escape f lux  spectrum. 



N i s  the  photoelectron number density i n  t h e  2 eV in t e rva l  
E 

centered on energy E ( e ~ )  f o r  a  given a l t i t ude .  The photoelectron 

veloci ty  i s  v  
E *  

Values f o r  t he  i n e l a s t i c  co l l i s ion  cross sections 

i e 
a (exc i ta t ion  and ionizat ion)  f o r  energy E were scaled from the  

E 

curves compiled by NISBET (1968). The ionization cross sections 

were extrapolated t o  62 eV using t h e  formula of LOTZ (1968). 

Diurnal electron density p ro f i l e s  ne were obtained from the data 

of WATKINS and TAYLOR (1969). The time scales  were expanded or 

contracted so t h a t  the  ground sunr ise  and sunset times would be 

those a t  the  l oca l  or conjugate locat ion f o r  summer (using Apri l  

1964 data)  and winter (using October 1964 da ta ) .  

Assuming t h a t  t he  photoelectron p i tch  angle d i s t r ibu t ion  i s  

i so t rop ic  over t h e  upward hemisphere, t he  dif fusion flux i n  t h e  

v e r t i c a l  d i rec t ion  i s  given by (NISBET, 1968). 

where % i s  t h e  mean f r ee  path f o r  a  photoelectron of energy E and 

I i s  t h e  magnetic d ip  angle. The probabi l i ty  t h a t  a  given e l a s t i c  

co l l i s i on  w i l l  r e s u l t  i n  escape from the  ionosphere without fu r ther  

co l l i s ions  i s  given by It i s  evaluated by NISBET (1968) assuming 
E' 

again an i so t rop ic  photoelectron d i s t r ibu t ion .  E las t ic  co l l i s ion  

e  
cross sections 0 are  scaled from the  curves i n  MCDANIEL (1964). 

E 



As equation (7) stands, it represents a matrix of equations 

coupled i n  energy and a l t i tude .  With the  i n i t i a l  approximation of 

d d i v ( @  ) = 0 f o r  a l l  energies and a l t i t udes  the  equations are uncoupled 
E 

i n  a l t i tude .  The solution procedure i s  t o  assume t h a t  N = 0 f o r  
E 

t he  highest  energy (63 e ~ )  . Then the  equations can be solved f o r  

successively lower energies a t  any given a l t i tude .  Having the  f i r s t  

approximation t o  N (h) the  divergence terms can be evaluated using 
E 

equation (14). It i s  found f o r  t h e  assumed models t h a t  the  diver- 

gence terms do not m o d i e  t h e  resu l t ing  photoelectron escape f l ux  

by more than 10% and only a t  low energies f o r  any l o c a l  time so t he  

divergence t e rns  are  neglected. 

The method of NISBET (1968) i s  used t o  calculate  the  

escaping photoelectron f lux  spectrum. The t o t a l  photoelectron f l u x  

escaping from the  ionosphere i s  composed therefore, of two terms. 

The f i r s t  i s  the  f l ux  of photoelectrons which make an e l a s t i c  

co l l i s ion  and then escape without making another co l l i s ion .  This 

escape f l u x  i s  obtained from equation (13) 

@e = p o l a n  N F~ dh. 
E E E 

The second t e rn  i s  t he  dif fusion f l u x  given by equation (14) a t  an 

a l t i t u d e  f o r  which t he  mean f r e e  path of t h e  photoelectrons exceeds 

t he  scale  height of the  photoelectron dis t r ibut ion.  In t h i s  case t he  

dif fusing p m t i c l e s  m e  f r e e  t o  escape along the  f i e l d  l i ne .  



Examples of the  t o t a l  escaping photoelectron f l ux  spectrum fo r  

summer and winter l o c a l  noon a t  600 km a l t i t u d e  a r e  given by t h e  so l i d  

curves i n  Figure 2. Note t he  maximum between 40 eV and 60 eV a s  a 

consequence of t he  maximum i n  t he  production spectrum. Also, t h e  

r e l a t i v e  content of high energy e lect rons  i s  s l i g h t l y  l a rge r  i n  

summer. These spectra  were calculated fo r  d i f f e r en t  l o c a l  times 

during t h e  conjugate summer and winter daytime. The escaping photo- 

e lect ron flux, in tegrated over a l l  energies, a t  600 Inn. a l t i t u d e  i s  

p lo t t ed  against  l o c a l  time i n  Figure 3. Around summer noon the  f l ux  

-2 - 1 
reaches 9 x 1012 e lect rons  m sec whereas a t  winter  noon it i s  

-2 - 1 5. J x 1012 e lect rons  m sec . 
The t o t a l  photoelectron production (primary plus  secondary) 

i n  the  summer noon ionosphere i s  nearly th ree  times t he  production 

i n  t he  winter noon ionosphere (3.6 x 1013 vs 1 .4  x loU elect rons  

-2 - 1 m sec ) However, t h e  escape probabi l i ty  f o r  these  electrons i s  

38% i n  the  winter and only 25% i n  t he  summer so t h a t  the  escaping 

f luxes  a re  within a f ac to r  of two a s  shown i n  Figure 3. 

In Figure 4, t he  calculated values of t he  escaping f l u x  f o r  

so la r  zenith angles x of 80" t o  110" a r e  compared with s a t e l l i t e  

measurements of RAO and DONLEY (1969) with good agreement. A t  two 

so la r  zenith angles (86.4" and 91.2") t he  calculated f l ux  values 

f o r  both sunrise and sunset a r e  shown. As expected because of t he  

lower e lect ron content, the  sunrise f luxes  a re  higher. The cornpari- 

son t o  experimental values i s  made fo r  summer and winter f o r  t he  f l u x  



a t  600 km and energies E > 5 eV. For the value of 2 .5 x 10 12 

-2 - 1 electrons m sec RAO and D O m Y  (1969) reported i n  loca l  

winter daytime  winter) = 57", ~ ( s m e r )  = 86" 1 the calculated 

12 -2 - 1 
f lux  would be 1.4 x 10 electrons m sec escaping upward 

12 
f r o m  the winter hemisphere and 4 . 1  x 10 electrons m'2 sec -1 

from the  conjugate s m e r  ionosphere. Also, the portion of 

the escaping f lux  tha t  f a l l s  above 40 eV i s  within the range 

observed by COSMOS - 5 (GALPERIN and MKGYARCHIK, 1967). These 

theoret ical  escaping f lux  values, therefore, seem t o  be i n  good 

agreement with experimental measurements . 



Along the path from one ionosphere t o  the other above 600 ka 

al t i tude,  t h e  escaping photoelectrons are  assumed t o  suffer  only 

Coulomb col l is ions with the  thermal electrons. NISBET (1968) has 

performed extensive calculations which show tha t  these col l is ions 

tend t o  keep the  pi tch angle dis t r ibut ion isotropic.  These co l l i -  

sions also themal ize  the  l o w  energy end of the i n i t i a l  escaping 

f lux  spectrum and s l ight ly  de-energize the higher energy photo- 

electrons. 

Using the formula of BUTLER and BUCKINGHCUVI (1962) for  energy 

loss  by Coulomb col l is ions with thermal electrons , a photoelectron 

with i n i t i a l  energy E a t  the conjugate ionosphere w i l l  have an energy 

E l  a t  the top of the  loca l  ionosphere 

For an isotropic  dis t r ibut ion cos a = 0.5 and for  a t o t a l  electron 

-2 
content of 1.3 x lox7 electrons m 



Equation (17 ) indicates tha t  photoelectrons with i n i t i a l  energies 

l e s s  than 10 eV w i l l  be de-energized t o  thermal energies and higher 

energy pa r t i c l e s  w i l l  loose some energy. 

The resul tant  spectra f o r  the  arr iving f lux  a t  noon i n  the  

winter and s m e r  ionospheres a re  given by the dots and squares, 

respectively, i n  Figure 2. Note tha t  the  low energy portions of the 

spectra a re  modified significantly.  The high energy portions a re  

nearly the  same as  for  the escaping f lux  a t  the conjugate ionosphere. 

Also, the spectrum arr iving i n  the loca l  winter i s  s l igh t ly  "harder" 

( f a l l s  off l e s s  steeply) than the  arriving s m e r  spectrwn. 

In Figure 3, the  arriving winter and summer fluxes are shown 

as  a function of conjugate time by the  short dashed and the dotted 

curves, respectively. Comparing the  arriving winter t o  the escaping 

s m e r  flux, 40% t o  73% during the daytime was not thermalized along 

the  path. During the daytime, 46% t o  66% of the escaping winter 

f lux  was not thermalized. 



7 .  CONJUGATE PHOT0EI;ECTRON IMPACT IONIZATION 

Arriving photoelectron f l ux  spectra s jmilar  t o  those shown i n  

Figure 2 have been calculated f o r  other times during the  conjugate 

daytime. Based on the  conclusion of NISBET (1968) about the  e f f ec t  

of sca t te r ing  on the f l u x  angular dis t r ibut ion,  it i s  assumed t h a t  

t h e  a r r iv ing  f l ux  has an angular d i s t r ibu t ion  such t h a t  the  average 

veloci ty  i n  the  downward direct ion i s  vE/2. The photoelectrons a r e  

themnalized by t h e  competing processes of impact ionization,  heating, 
/ 

and exci ta t ion.  

The f l ux  spectrum FE f o r  20 km s teps  i n  a l t i tude ,  s t a r t i ng  

a t  600 km, i s  obtained from the  s e t  of l i nea r  d i f f e r e n t i a l  equations 

where t he  other quant i t i es  have the  same meaning a s  i n  Section 5. 

A t  each a l t i tude ,  the  impact ionization i s  obtained from the 

r e l a t i on .  



ion 
where % i s  t he  impact ionizat ion cross sect ion f o r  a given species. 

Representative impact ionizat ion r a t e  p ro f i l e s  due t o  conjugate 

photoelectrons a r e  shown i n  Figure 5 f o r  l o c a l  summer and winter 

noons. For comparison, t he  photo plus  secondary photoelectron 

production r a t e  p r o f i l e  a s  wel l  a s  a l o s s  r a t e  p robabi l i ty  ( ~ / n ,  

- 1 
where L i s  calculated using a = 3 x lowU m3 sec , 7 ( ~ 2 )  = 

3 x lo-19 m3 sec- l  and ~ ( 0 ~ )  = 3 x 10 -18 m3 see-'; SWIDER, 1965) 

a r e  shown. The r e l a t i v e  contribution of t h i s  ionization t o  the  

electron density depends not only on t h e  r e l a t i v e  magnitude of t he  

conjugate photoelectron ionizat ion r a t e  but a l so  on the  a l t i t u d e  a t  

which t h i s  ionizat ion i s  created. Ionization produced a t  high 

a l t i t u d e  contributes more because it has a longer l ife-t ime. 

As i s  seen from Figure 5, t he  maximum conjugate photoelectron 

impact ionizat ion i n  summer occurs 30 km higher than the  maximum 

t o t a l  l oca l  ionizat ion and both occur wel l  above the  maximum of the  

l o s s  region (140 km). This impact ionizat ion has a long l ife-t ime 

(of the  order of several  hours) which r e s u l t s  i n  a larger eontribu- 

t i o n  than i t s  modest r e l a t i v e  magnitude would indicate.  A t  230 km, 

t he  conjugate impact ionizat ion i s  4.7% of the  t o t a l  l o c a l  ionization.  

During l o c a l  winter, t h e  peak of the addi t ional  ionizat ion occurs 

approximately 40 km lower than the  peak of t he  l oca l  ionizat ion 



but  s t i l l  wel l  above the  peak l o s s  region. However, t h i s  addi- 

t i o n a l  ionization i s  equal t o  the  l oca l  ionizat ion a.t 220 Ism and 

i s  26% a t  320 km f o r  t h e  case of l oca l  noon. 

In Figure 6  a r e  plot ted the  height in tegrated impact ioni-  

zat ion r a t e  due t o  t h e  conjugate photoelectrons f o r  s m e r  and. winter 

l o c a l  daytimes. The time of l o c a l  sunrise (LSR) and. sunset (LXS) 

a s  wel l  a s  conjugate noon (CN) are  indicated by the  arrows. Because 

of the  geographic locat ion of t h e  magnetic conjugate point, conjugate 

noon occurs a t  10.2 hours l oca l  time f o r  the  model considered. On 

comparing these height integrated impact ionization curves t o  the  

a r r iv ing  conjugate f l ux  curves of Figure 3, the  impact ionizat ion 

eff ic iency can be computed. For l o c a l  summer daytime, it ranges 

from 0.36 t o  0.46 and f o r  l o c a l  winter daytime f ran  0 .31  t o  0.49, 

both averaging about 0.40. 

For comparison, the  height integrated photoionization r a t e  

plus the  secondary ionizat ion r a t e  due t o  impact ionization by loca l  

photoelectrons i s  a l s o  p lo t ted  i n  Figure 6.  During summer, the  

ionizat ion due t o  conjugate photoelectrons i s  a  small f rac t ion  

(3.2% a t  l o c a l  noon). Most importantly, during winter nighttime, 

pa r t i cu l a r ly  before sunrise, when the  l oca l  photoproduction vanishes, 

t h e  conjugate photoelectron impact ionization i s  qui te  s ignif icant  

f o r  several  hours. This impact ionizat ion curve tends t o  peak i n  t he  

ear ly  morning because the  electron density i s  lower. Therefore, the  

dominating energy losses  a re  by impact ionization and exci ta t ion 

ra ther  than by Coulomb co l l i s ions .  



In  considering Figure 6, it must be kept i n  mind t h a t  it 

r e f e r s  t o  a location whose conjugate point  has a 9" lower geographic 

la t i tude ,  so  t h a t  the  conjugate photoelectrons emanate from a region 

with cmpara t ive ly  high photoelectron production. 

Over North America, t he  conjugate region has a higher 

geographic la t i tude ,  so  t h a t  the  conjugate impact ionizat ion should 

be l e s s  important there  than over Europe. 



8. DISCUSSION OF THE MODEL 

An important l imitat ion t o  the quantitative resu l t s  of t h i s  

model calculation i s  the neutral  atmosphere model (HARRIS and PRIESTER, 

1962). This model i s  based pr incipal ly  on theore t ica l  considerations 

and also does not allow fo r  seasonal and l a t i t ud ina l  variations. 

Better neutral  atmosphere models based on experimental data, 

when available, should yield be t t e r  quantitative resu l t s .  

The method used t o  calculate the escaping photoelectron f lux  

spectrum (NISBET, 1968) seems t o  give reasonable agreement with 

observed fluxes. However, since some assumptions about t h i s  method 

were rather  ad hoc, two other techniques have been recently proposed. 

BANKS and NAGY (1969) have solved a se t  of transport  equations f o r  

upgoing and downgoing fluxes a t  one ionosphere. By a numerical 

solution i n  a multicomponent atmosphere for  28 eV, they calculate 

11 -2 -1 
a daytime escape f lux  of 1 t o  2 x 10 electrons m sec . As 

seen from Figure 2 ( a t  27 eV fo r  the same He I1 304 W ionization of 

10 -2 -1 o), the escaping f lux  values range from 7.5 x 10 electrons m see 

2 - 1 
a t  winter noon t o  1.5 x lox1 electrons m sec a t  summer noon. 

Taking a different  approach CICERONE and BOWHILL (1969) have used 



a Monte C a l o  technique t o  simulate photoelectron diff'usion through 

the  atmosphere. Probabi l i t ies  f o r  escape a t  1000 k m  from an i n i t i a l  

a l t i t ude  have been calculated for  up t o  20 eV, but the  escape f l ux  

has not yet been evaluated. 

In computing the  impact ionization magnitude due t o  conjugate 

photoelectrons it has been assumed t h a t  t he  arr iving f l ux  incident 

a t  600 Ian becomes en t i r e ly thema l i zed in the loca l ionosphe re .  BClNKS 

and NAGY (1969)~ however, take i n t o  account a backscatter  f ac to r  

of these downgoing photoelectrons by e l a s t i c  co l l i s ions  with atomic 

oxygen. For a 28 eV photoelectron incident on a dark l o c d ,  ionosphere 

5% are backscattered. The f rac t ion  backscattered decreases with 

increasing energy. Such upward fluxes frm pre  dawn ionospheric 

regions have been observed. Consequently, fu r ther  evaluation of 

t h i s  backscatter  f ac to r  f o r  the  e n t i r e  photoelectron f l u x  spectrum 

may decrease the  r e su l t i ng  impact ionization ( ~ i ~ u r e s  5 and 6) up 

t o  a fac tor  of two. A somewhat compensating assumption i s  t h a t  a 

s ingle  step ionizat ion process has been assumed. The impact ioni-  

zation values shown i n  Figures 5 and 6 may be increased i f  multiple 

s tep  ionizat ion ( ionizat ion of excited atoms) i s  important. 

The importance of these vmious techniques and fac tors  can 

be evaluated fo r  inclusion i n  fur ther  calculat ions  with the  develop- 

ment of improved neu t ra l  atmosphere models, the  measurement s of 

photoelectron charac te r i s t i cs  and more deta i led s tudies  of the  

ionospheric electron density variat ions.  



9. DISC'ZJSSION OF THE RESULTS AND CONCLUSIONS 

From the  r e s u l t s  p l o t t e d  i n  Figures 5 and 6, t h e  following 

conclusions can be  drawn about t h e  impact ionizat ion due t o  conjugate 

photoelectrons: 

a )  During summer daytime t h e  height  in tegra ted conjugate 

impact ionizat ion represents  a  small (3.2% a t  noon) 

addit ion t o  the  l o c a l  ionizat ion.  The peak of t h i s  addi- 

t i o n  ionizat ion r a t e  p ro f i l e  (4.7% of the  l o c a l )  occurs 

above t he  l o c a l  ionizat ion peak (by 30 km). 

b )  During winter  daytime t h e  height  in tegra ted conjugate 

impact ionizat ion represents  a  very s ignf ic ian t  (48% at 

noon) addit ion t o  t he  l o c a l  ionizat ion.  The peak of t h i s  

add i t iona l  ionizat ion r a t e  p r o f i l e  (83% of t he  l o c a l )  

occurs below t h e  l o c a l  ionizat ion peak (by 40 km) . 

c )  During winter  nighttime when t he  l o c a l  ionosphere i s  

not illuminated, the  conjugate photoelectron impact ion- 

i z a t i on  i s  s t i l l  qu i t e  s ign i f i can t  (0200 - 0600 hours f o r  

t he  geographic pos i t ion  s tudied) .  

In order t o  quan t i t a t ive ly  asce r ta in  the  contribution of t h i s  

addi t ional  impact ionizat ion t o  the  e lec t ron densi ty  the  time dependent 

cont inui ty  equation would have t o  be solved. f o r  each a l t i t ude .  The 



solut ion of t h i s  equation i s  sens i t ive  t o  the  assumed models and 

react ion r a t e s  (cf .  FRITZ and YEX, 1968). It does not seem r e a l i s t i c  

t o  c m r y  out such a calculation now with the  present uncer ta int ies  

i n  react ion r a t e s  and the  lack of suf f ic ien t  data  on t he  neu t ra l  

atmosphere. However, from the  r e s u l t s  of the  calculations i n  t h i s  

paper, several  qua l i t a t ive  conjectures can be made. 

The magnitude of the  height integrated impact ionization 

cer ta in ly  i s  not suf f ic ien t  t o  produce the  forenoon peaks i n  the  

summer t o t a l  electron content reported by LISZKA (1967). These 

forenoon peaks may be explained by neu t ra l  a i r  wind e f f ec t s  d i s -  

cussed by KOHL, KING and ECCLES (1968 and 1969). However, the  

magnitude of the  *act ionizat ion seems suf f ic ien t  t o  have an 

e f f ec t  on these curves. Because of the  character o f t h e  geomagnetic 

f i e l d  with respect  t o  geographic coordinates, each geographic 

locat ion w i l l  have a unique conjugate contribution i n  magnitude and 

loca l  time which should be observed from the  t o t a l  electron content 

measurements . 
A long standing problem i n  ionospheric physics i s  t he  seasonal 

. . 

anomaly i n  the  F2-layer c r i t i c a l  frequency. A t  high l a t i t udes  t he re  

i s  an annual var ia t ion with the  maximum i n  the  winter. A t  low lat i-  

tudes, the  var ia t ion  becomes semiannual with t he  maxima near t he  

equinoxes (KING and SMITH, 1968). Comparing the  magnitudes of t he  

l oca l ly  produced secondary ionization and of t he  conjugate ionizat ion 



with season, qual i ta t ively ,  it would seem tha t  t h i s  addi t ional  ion- 

i z a t i on  gives a non-negligible contribution t o  these seasonal 

differences.  The high l a t i t u d e  annual var ia t ion  might be explained 

by the  much la rger  addi t ional  ionizat ian i n  winter.  A t  low la t i tudes ,  

t h e  path losses  would became negl igible  and t h e  l oca l ly  produced plus  

conjugate ionizat ion may be a maximum a t  the  equinoxes. 

Figure 6 shows t h a t  the  conjugate ionizat ion source must be 

important during winter nighttime. This conjugate source could main- 

t a i n  t he  nighttime ionosphere f o r  some hours, and even cause enhance- 

ments. Over Europe t he  ionization would be important i n  t he  hours 

a f t e r  midnight because of t h e  conjugate time difference.  Over North 

America f o r  instance, it would be important i n  t he  hours before l o c a l  

midnight. A comparison between the  observations i n  Europe and those 

made a t  Stanford and a t  Hawaii by GARRIOT -- e t  a l .  (1965) seems t o  

corroborate t h i s  point, although other e f f ec t s  ce r ta in ly  may be 

important. 

An a t t r a c t i v e  feature  of t h i s  addi t ional  ionizat ion source 

i s  t ha t  it contributes a t  a l l  l a t i t udes  and longitudes fo r  which the  

conjugate ionosphere i s  illuminated above 100 km (but only within 

t h e  l a t i t udes  f o r  which the  f i e l d  l i n e s  a r e  closed and f o r  which the  

e l e c t r i c  f i e l d s  along the  f i e l d  l i ne s  a r e  negl igible) .  

This paper has shown tha t  conjugate photoelectrons can be a 

source of ionizat ion through impact i n  the  l oca l  atmosphere. The 



magnitude of t h i s  ionization i s  ra ther  small i n  summer and qui te  

s ignif icant  i n  d n t e r .  Further model calculations and experimental 

observations are  needed t o  ascer ta in  i t s  e f f ec t  on the  electron 

density p ro f i l e  and on the t o t a l  electron content. 
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FIGURF: C A E  IONS 

Figure 1. Primary photoelectron production r a t e  spectrum f o r  

s m e r  and winter noon a t  the  conjugate hemisphere. 

Note t h a t  these curves exhibi t  broad maxima between 

40 and 60 eV but t h a t  t he  spectrum f a l l s  o f f  sharply 

above 60 eV. 

Figure 2. Total conjugate escaping and l o c a l  arr iving photo- 

e lect ron f l ux  spectra f o r  s m e r  and winter l oca l  

noon a t  600 km a l t i t ude .  

Figure 3.  Total conjugate escaping and l o c a l  arr iving photo- 

e lect ron f l ux  a s  a function of conjugate and l o c a l  

time, respectively, f o r  summer and winter. 

Figure 4. Camparison of calculated and observed photoelectron 

f l u x  values (E > 5 e ~ )  near sunrise and sunset. The 

observed values a r e  from RAO and DONLEY (1969). A t  

so la r  zenith angles of 86.4" and 91.9" calculated 

f l u x  values a re  given fo r  both sunrise and sunset, 

t he  sunrise value being higher a s  expected. 



Figure 5. Impact ionization r a t e  p ro f i l e s  due t o  conjugate 

photoelectrons f o r  l oca l  summer and winter noons. 

The l oca l  photo plus secondary ionization and the  

l o s s  probabi l i ty  a r e  plot ted f o r  comparison. 

Figure 6. Height integrated conjugate photoelectron impact 

ionizat ion r a t e  f o r  summer and winter l oca l  day- 

times. The times of l o c a l  sunrise (LSR), l o c a l  

sunset (LSS) and conjugate noon (CN) a re  indicated by 

arrows. For comparison, the  height integrated 

photo plus  secondary ionizat ion r a t e  i s  a l so  shown. 
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