10,392 research outputs found

    Evaluation of the Langley 4- by 7-meter tunnel for propeller noise measurements

    Get PDF
    An experimental and theoretical evaluation of the Langley 4- by 7- Meter Tunnel was conducted to determine its suitability for obtaining propeller noise data. The tunnel circuit and open test section are described. An experimental evaluation is performed using microphones placed in and on the tunnel floor. The reflection characteristics and background noise are determined. The predicted source (propeller) near-field/far-field boundary is given using a first-principles method. The effect of the tunnel-floor boundry layer on the noise from the propeller is also predicted. A propeller test stand used for part of his evaluation is also described. The measured propeller performance characteristics are compared with those obtained at a larger scale, and the effect of the test-section configuration on the propeller performance is examined. Finally, propeller noise measurements were obtained on an eight-bladed SR-2 propeller operating at angles of attack -8 deg, 0 deg, and 4.6 deg to give an indication of attainable signal-to-noise ratios

    Radial HI Profiles at the Periphery of Galactic Disks: The Role of Ionizing Background Radiation

    Full text link
    Observations of neutral hydrogen in spiral galaxies reveal a sharp cutoff in the radial density profile at some distance from the center. Using 22 galaxies with known HI distributions as an example, we discuss the question of whether this effect can be associated exclusively with external ionizing radiation, as is commonly assumed. We show that before the surface density reaches σHI0.5M/pc2\sigma_{\textrm{HI}}\le 0.5 {\cal M}_\odot/{\textrm {pc}}^2(the same for galaxies of different types), it is hard to expect the gas to be fully ionized by background radiation. For two of 13 galaxies with a sharp drop in the HI profile, the "steepening" can actually be caused by ionization. At the same time, for the remaining galaxies, the observed cutoff in the radial HI profile is closer to the center than if it was a consequence of ionization by background radiation and, therefore, it should be caused by other factors.Comment: 15 pages, 6 figure

    Self-Consistent Response of a Galactic Disk to an Elliptical Perturbation Halo Potential

    Get PDF
    We calculate the self-consistent response of an axisymmetric galactic disk perturbed by an elliptical halo potential of harmonic number m = 2, and obtain the net disk ellipticity. Such a potential is commonly expected to arise due to a galactic tidal encounter and also during the galaxy formation process. The self-gravitational potential corresponding to the self-consistent, non-axisymmetric density response of the disk is obtained by inversion of Poisson equation for a thin disk. This response potential is shown to oppose the perturbation potential, because physically the disk self-gravity resists the imposed potential. This results in a reduction in the net ellipticity of the perturbation halo potential in the disk plane. The reduction factor denoting this decrease is independent of the strength of the perturbation potential, and has a typical minimum value of 0.75 - 0.9 for a wide range of galaxy parameters. The reduction is negligible at all radii for higher harmonics (m > or = 3) of the halo potential. (abridged).Comment: 26 pages (LaTex- aastex style), 3 .eps figures. To appear in the Astrophysical Journal, Vol. 542, Oct. 20, 200

    A Dust-Penetrated Classification Scheme for Bars as Inferred from their Gravitational Force Fields

    Get PDF
    The division of galaxies into ``barred'' (SB) and ``normal'' (S) spirals is a fundamental aspect of the Hubble galaxy classification system. This ``tuning fork'' view was revised by de Vaucouleurs, whose classification volume recognized apparent ``bar strength'' (SA, SAB, SB) as a continuous property of galaxies called the ``family''. However, the SA, SAB, and SB families are purely visual judgments that can have little bearing on the actual bar strength in a given galaxy. Until very recently, published bar judgments were based exclusively on blue light images, where internal extinction or star formation can either mask a bar completely or give the false impression of a bar in a nonbarred galaxy. Near-infrared camera arrays, which principally trace the old stellar populations in both normal and barred galaxies, now facilitate a quantification of bar strength in terms of their gravitational potentials and force fields. In this paper, we show that the maximum value, Qb, of the ratio of the tangential force to the mean radial force is a quantitative measure of the strength of a bar. Qb does not measure bar ellipticity or bar shape, but rather depends on the actual forcing due to the bar embedded in its disk. We show that a wide range of true bar strengths characterizes the category ``SB'', while de Vaucouleurs category ``SAB'' corresponds to a much narrower range of bar strengths. We present Qb values for 36 galaxies, and we incorporate our bar classes into a dust-penetrated classification system for spiral galaxies.Comment: Accepted for publication in the Astrophysical Journal (LaTex, 30 pages + 3 figures); Figs. 1 and 3 are in color and are also available at http://bama.ua.edu/~rbuta/bars

    Uncovering Spiral Structure in Flocculent Galaxies

    Get PDF
    We present K'(2.1 micron) observations of four nearby flocculent spirals, which clearly show low-level spiral structure and suggest that kiloparsec-scale spiral structure is more prevalent in flocculent spirals than previously supposed. In particular, the prototypical flocculent spiral NGC 5055 is shown to have regular, two-arm spiral structure to a radius of 4 kpc in the near infrared, with an arm-interarm contrast of 1.3. The spiral structure in all four galaxies is weaker than that in grand design galaxies. Taken in unbarred galaxies with no large, nearby companions, these data are consistent with the modal theory of spiral density waves, which maintains that density waves are intrinsic to the disk. As an alternative, mechanisms for driving spiral structure with non-axisymmetric perturbers are also discussed. These observations highlight the importance of near infrared imaging for exploring the range of physical environments in which large-scale dynamical processes, such as density waves, are important.Comment: 12 pages AASTeX; 3 compressed PS figures can be retrieved from ftp://ftp.astro.umd.edu/pub/michele as file thornley.tar (1.6Mbytes). Accepted to Ap.J. Letters.(Figures now also available here, and from ftp://ftp.astro.umd.edu/pub/michele , in GIF format.

    A new numerical method for obtaining gluon distribution functions G(x,Q2)=xg(x,Q2)G(x,Q^2)=xg(x,Q^2), from the proton structure function F2γp(x,Q2)F_2^{\gamma p}(x,Q^2)

    Get PDF
    An exact expression for the leading-order (LO) gluon distribution function G(x,Q2)=xg(x,Q2)G(x,Q^2)=xg(x,Q^2) from the DGLAP evolution equation for the proton structure function F2γp(x,Q2)F_2^{\gamma p}(x,Q^2) for deep inelastic γp\gamma^* p scattering has recently been obtained [M. M. Block, L. Durand and D. W. McKay, Phys. Rev. D{\bf 79}, 014031, (2009)] for massless quarks, using Laplace transformation techniques. Here, we develop a fast and accurate numerical inverse Laplace transformation algorithm, required to invert the Laplace transforms needed to evaluate G(x,Q2)G(x,Q^2), and compare it to the exact solution. We obtain accuracies of less than 1 part in 1000 over the entire xx and Q2Q^2 spectrum. Since no analytic Laplace inversion is possible for next-to-leading order (NLO) and higher orders, this numerical algorithm will enable one to obtain accurate NLO (and NNLO) gluon distributions, using only experimental measurements of F2γp(x,Q2)F_2^{\gamma p}(x,Q^2).Comment: 9 pages, 2 figure

    Analytic models and forward scattering from accelerator to cosmic-ray energies

    Full text link
    Analytic models for hadron-hadron scattering are characterized by analytical parametrizations for the forward amplitudes and the use of dispersion relation techniques to study the total cross section σtot\sigma_{tot} and the ρ\rho parameter. In this paper we investigate four aspects related to the application of the model to pppp and pˉp\bar{p}p scattering, from accelerator to cosmic-ray energies: 1) the effect of different estimations for σtot\sigma_{tot} from cosmic-ray experiments; 2) the differences between individual and global (simultaneous) fits to σtot\sigma_{tot} and ρ\rho; 3) the role of the subtraction constant in the dispersion relations; 4) the effect of distinct asymptotic inputs from different analytic models. This is done by using as a framework the single Pomeron and the maximal Odderon parametrizations for the total cross section. Our main conclusions are the following: 1) Despite the small influence from different cosmic-ray estimations, the results allow us to extract an upper bound for the soft pomeron intercept: 1+ϵ=1.0941 + \epsilon = 1.094; 2) although global fits present good statistical results, in general, this procedure constrains the rise of σtot\sigma_{tot}; 3) the subtraction constant as a free parameter affects the fit results at both low and high energies; 4) independently of the cosmic-ray information used and the subtraction constant, global fits with the odderon parametrization predict that, above s70\sqrt s \approx 70 GeV, ρpp(s)\rho_{pp}(s) becomes greater than ρpˉp(s)\rho_{\bar{p}p}(s), and this result is in complete agreement with all the data presently available. In particular, we infer ρpp=0.134±0.005\rho_{pp} = 0.134 \pm 0.005 at s=200\sqrt s = 200 GeV and 0.151±0.0070.151 \pm 0.007 at 500 GeV (BNL RHIC energies).Comment: 16 pages, 7 figures, aps-revtex, wording changes, corrected typos, to appear in Physical Review

    Semi-Analytical Models for Lensing by Dark Halos: I. Splitting Angles

    Get PDF
    We use the semi-analytical approach to analyze gravitational lensing of quasars by dark halos in various cold dark matter (CDM) cosmologies, in order to determine the sensitivity of the prediction probabilities of images separations to the input assumptions regarding halos and cosmologies. The mass function of dark halos is assumed to be given by the Press-Schechter function. The mass density profile of dark halos is alternatively taken to be the singular isothermal sphere (SIS), the Navarro-Frenk-White (NFW) profile, or the generalized NFW profile. The cosmologies include: the Einstein-de Sitter model (SCDM), the open model (OCDM), and the flat \Lambda-model (LCDM). As expected, we find that the lensing probability is extremely sensitive to the mass density profile of dark halos, and somewhat less so to the mean mass density in the universe, and the amplitude of primordial fluctuations. NFW halos are very much less effective in producing multiple images than SIS halos. However, none of these models can completely explain the current observations: the SIS models predict too many large splitting lenses, while the NFW models predict too few small splitting lenses. This indicates that there must be at least two populations of halos in the universe. A combination of SIS and NFW halos can reasonably reproduce the current observations if we choose the mass for the transition from SIS to NFW to be ~ 10^{13} solar masses. Additionally, there is a tendency for CDM models to have too much power on small scales, i.e. too much mass concentration; and it appears that the cures proposed for other apparent difficulties of CDM would help here as well, an example being the warm dark matter (WDM) variant which is shown to produce large splitting lenses fewer than the corresponding CDM model by one order of magnitude.Comment: 46 pages, including 13 figures. Revised version with significant improvemen
    corecore