813 research outputs found
Functional identification of Arabidopsis ATSIP2 (At3g57520) as an alkaline α-galactosidase with a substrate specificity for raffinose and an apparent sink-specific expression patter
Arabidopsis ATSIP2 has recently been suggested to be a raffinose synthase gene. However, it has high amino acid identity to functionally characterized alkaline α-galactosidases from Cucumis melo and Zea mays. Using the Sf9 insect cell expression system, we demonstrate that recombinant ATSIP2 is a genuine alkaline α-galactosidase with a distinct substrate specificity for raffinose, and not a raffinose synthase. A β-glucuronidase reporter construct using the ATSIP2 promoter shows that ATSIP2 is strongly expressed in sink tissues of Arabidopsis, i.e. sink leaves and non-xylem parts of the root stele, suggesting a physiological function in raffinose phloem unloading
Achirality in the low temperature structure and lattice modes of tris(acetylacetonate)iron(iii)
Tris(acetylacteonate) iron(III) is a relatively ubiquitous mononuclear inorganic coordination complex. The bidentate nature of the three acetylacteonate ligands coordinating around a single centre inevitably leads to structural isomeric forms, however whether or not this relates to chirality in the solid state has been questioned in the literature. Variable temperature neutron diffraction data down to T = 3 K, highlights the dynamic nature of the ligand environment, including the motions of the hydrogen atoms. The Fourier transform of the molecular dynamics simulation based on the experimentally determined structure was shown to closely reproduce the low temperature vibrational density of states obtained using inelastic neutron scattering
Spin Waves in Disordered III-V Diluted Magnetic Semiconductors
We propose a new scheme for numerically computing collective-mode spectra for
large-size systems, using a reformulation of the Random Phase Approximation. In
this study, we apply this method to investigate the spectrum and nature of the
spin-waves of a (III,Mn)V Diluted Magnetic Semiconductor. We use an impurity
band picture to describe the interaction of the charge carriers with the local
Mn spins. The spin-wave spectrum is shown to depend sensitively on the
positional disorder of the Mn atoms inside the host semiconductor. Both
localized and extended spin-wave modes are found. Unusual spin and charge
transport is implied.Comment: 14 pages, including 11 figure
Electronic structure, phase stability and chemical bonding in ThAl and ThAlH
We present the results of theoretical investigation on the electronic
structure, bonding nature and ground state properties of ThAl and
ThAlH using generalized-gradient-corrected first-principles
full-potential density-functional calculations. ThAlH has been reported
to violate the "2 \AA rule" of H-H separation in hydrides. From our total
energy as well as force-minimization calculations, we found a shortest H-H
separation of 1.95 {\AA} in accordance with recent high resolution powder
neutron diffraction experiments. When the ThAl matrix is hydrogenated, the
volume expansion is highly anisotropic, which is quite opposite to other
hydrides having the same crystal structure. The bonding nature of these
materials are analyzed from the density of states, crystal-orbital Hamiltonian
population and valence-charge-density analyses. Our calculation predicts
different nature of bonding for the H atoms along and . The strongest
bonding in ThAlH is between Th and H along which form dumb-bell
shaped H-Th-H subunits. Due to this strong covalent interaction there is very
small amount of electrons present between H atoms along which makes
repulsive interaction between the H atoms smaller and this is the precise
reason why the 2 {\AA} rule is violated. The large difference in the
interatomic distances between the interstitial region where one can accommodate
H in the and planes along with the strong covalent interaction
between Th and H are the main reasons for highly anisotropic volume expansion
on hydrogenation of ThAl.Comment: 14 pages, 9 figure
Effect of Layer-Stacking on the Electronic Structure of Graphene Nanoribbons
The evolution of electronic structure of graphene nanoribbons (GNRs) as a
function of the number of layers stacked together is investigated using
\textit{ab initio} density functional theory (DFT) including interlayer van der
Waals interactions. Multilayer armchair GNRs (AGNRs), similar to single-layer
AGNRs, exhibit three classes of band gaps depending on their width. In zigzag
GNRs (ZGNRs), the geometry relaxation resulting from interlayer interactions
plays a crucial role in determining the magnetic polarization and the band
structure. The antiferromagnetic (AF) interlayer coupling is more stable
compared to the ferromagnetic (FM) interlayer coupling. ZGNRs with the AF
in-layer and AF interlayer coupling have a finite band gap while ZGNRs with the
FM in-layer and AF interlayer coupling do not have a band gap. The ground state
of the bi-layer ZGNR is non-magnetic with a small but finite band gap. The
magnetic ordering is less stable in multilayer ZGNRs compared to single-layer
ZGNRs. The quasipartcle GW corrections are smaller for bilayer GNRs compared to
single-layer GNRs because of the reduced Coulomb effects in bilayer GNRs
compared to single-layer GNRs.Comment: 10 pages, 5 figure
Linear-response theory and lattice dynamics: a muffin-tin orbital approach
A detailed description of a method for calculating static linear-response
functions in the problem of lattice dynamics is presented. The method is based
on density functional theory and it uses linear muffin-tin orbitals as a basis
for representing first-order corrections to the one-electron wave functions. As
an application we calculate phonon dispersions in Si and NbC and find good
agreement with experiments.Comment: 18 pages, Revtex, 2 ps figures, uuencoded, gzip'ed, tar'ed fil
All electron and pseudopotential study of the spin polarization of the V (001) surface: LDA versus GGA
The spin-polarization at the V(001) surface has been studied by using
different local (LSDA) and semilocal (GGA) approximations to the
exchange-correlation potential of DFT within two ab initio methods: the
all-electron TB-LMTO-ASA and the pseudopotential LCAO code SIESTA (Spanish
Initiative for Electronic Simulations with Thousands of Atoms). A comparative
analysis is performed first for the bulk and then for a N-layer V(001) film (7
< N < 15). The LSDA approximation leads to a non magnetic V(001) surface with
both theoretical models in agreement (disagreement) with magneto-optical Kerr
(electron-capture spectroscopy) experiments. The GGA within the pseudopotential
method needs thicker slabs than the LSDA to yield zero moment at the central
layer, giving a high surface magnetization (1.70 Bohr magnetons), in contrast
with the non magnetic solution obtained by means of the all-electron code.Comment: 12 pages, 1 figure. Latex gzipped tar fil
Dynamical properties of liquid Al near melting. An orbital-free molecular dynamics study
The static and dynamic structure of liquid Al is studied using the orbital
free ab-initio molecular dynamics method. Two thermodynamic states along the
coexistence line are considered, namely T = 943 K and 1323 K for which X-ray
and neutron scattering data are available. A new kinetic energy functional,
which fulfills a number of physically relevant conditions is employed, along
with a local first principles pseudopotential. In addition to a comparison with
experiment, we also compare our ab-initio results with those obtained from
conventional molecular dynamics simulations using effective interionic pair
potentials derived from second order pseudopotential perturbation theory.Comment: 15 pages, 12 figures, 2 tables, submitted to PR
Mechanical and Electronic Properties of MoS Nanoribbons and Their Defects
We present our study on atomic, electronic, magnetic and phonon properties of
one dimensional honeycomb structure of molybdenum disulfide (MoS) using
first-principles plane wave method. Calculated phonon frequencies of bare
armchair nanoribbon reveal the fourth acoustic branch and indicate the
stability. Force constant and in-plane stiffness calculated in the harmonic
elastic deformation range signify that the MoS nanoribbons are stiff quasi
one dimensional structures, but not as strong as graphene and BN nanoribbons.
Bare MoS armchair nanoribbons are nonmagnetic, direct band gap
semiconductors. Bare zigzag MoS nanoribbons become half-metallic as a
result of the (2x1) reconstruction of edge atoms and are semiconductor for
minority spins, but metallic for the majority spins. Their magnetic moments and
spin-polarizations at the Fermi level are reduced as a result of the
passivation of edge atoms by hydrogen. The functionalization of MoS
nanoribbons by adatom adsorption and vacancy defect creation are also studied.
The nonmagnetic armchair nanoribbons attain net magnetic moment depending on
where the foreign atoms are adsorbed and what kind of vacancy defect is
created. The magnetization of zigzag nanoribbons due to the edge states is
suppressed in the presence of vacancy defects.Comment: 11 pages, 5 figures, first submitted at November 23th, 200
- …