21 research outputs found

    DIAGNOSTIC ALGORITHM IN CHILDREN WITH ENURESIS NOCTURNA

    Get PDF
    Enuresis nocturna is a common disorder in childhood representing a serious medico-social problem. A series of organic, functional, familial, life-style, and psycho-social reasons are involved in wetting one's bed in children. The diagnostic algorithm in children with enuresis nocturna includes a detailed anamnesis and clinical examination, laboratory tests of urine, urea, creatinine, uric acid, ionogram, and echography of the urinary tract. The exclusion of an organic etiology requires purposeful search for psycho-social, familial, and life-style factors as well as consult examination by a psychiatrist or neurologist

    Selective cell response on natural polymer bio-interfaces textured by femtosecond laser

    Get PDF
    This study reports on the evaluation of laser processed natural polymer-chitosan, which is under consideration as a biointerface used for temporary applications as skin and cartilage substitutes. It is employed for tissue engineering purposes, since it possesses a significant degree of biocompatibility and biodegradability. Chitosan-based thin films were processed by femtosecond laser radiation to enhance the surface properties of the material. Various geometry patterns were produced on polymer surfaces and employed to examine cellular adhesion and orientation. The topography of the modified zones was observed using scanning electron microscopy and confocal microscopy. Test of the material cytotoxicity was performed by evaluating the life/dead cell correlation. The obtained results showed that texturing with femtosecond laser pulses is appropriate method to initiate a predefined cellular response. Formation of surface modifications in the form of foams with an expansion of the material was created under laser irradiation with a number of applied laser pulses from N = 1-5. It is shown that irradiation with N > 5 results in disturbance of microfoam. Material characterization reveals a decrease in water contact angle values after laser irradiation of chitosan films. Consequently, changes in surface roughness of chitosan thin-film surface result in its functionalization. Cultivation of MC3T3 and ATMSC cells show cell orientational migration concerning different surface patterning. The influence of various pulse durations (varying from tau = 30-500 fs) over biofilms surface was examined regarding the evolution of surface morphology. The goal of this study was to define the optimal laser conditions (laser energy, number of applied pulses, and pulse duration) to alter surface wettability properties and porosity to improve material performance. The acquired set of results indicate the way to tune the surface properties to optimize cell-interface interaction

    Laser- and Light-Induced Autofluorescence Spectroscopy of Human Skin in Dependence on Excitation Wavelengths

    No full text
    Human skin contains various types of native fluorophores and absorbers with unique absorption and emission spectra, different quantum efficiency, concentration and spatial distribution within the skin. Autofluorescence spectroscopy is applied as diagnostic tool for cutaneous tumor detection that increases the importance of evaluation of natural existing fluorophores and unification of data for given class of pathologies. In the current study, several excitation sources in the region 337-405 nm are applied, to achieve information about typical autofluorescent properties of normal human skin

    Measurement of Small Variations in Optical Properties of Turbid Inclusions with Respect to Surrounding Turbid Medium

    No full text
    Special optical system for non-invasive determination of small variations in the optical properties of homogeneous turbid inclusions embedded into large turbid medium is proposed and developed experimentally. Results for different choice of the optical parameters of both media are presented. The minimum detectable changes in the inclusion optical properties are estimated to be less than 5% with respect to the surrounding medium. It is shown that the output signals depend not only on the relative magnitude but also on the sign of the difference in optical properties of both media. The results could be used for developing techniques and algorithms for distinguishing of different kinds of abnormal formations

    >

    No full text

    Development of Low-Cost Photodynamic Therapy Device

    No full text
    Photodiagnosis and photodynamic therapy of non-melanoma skin cancers using delta-aminolevulinic acid/protoporphyrin IX (5-ALA/PpIX) give a combined application with broadest dissemination in the current clinical practice. The problems with using of lasers as light sources are the expenses associated with the operation of these types of installations. This is why we test the capability of cheaper sources - light-emitting diodes at 405 nm for fluorescence excitation of PpIX and 635 nm for photodynamic action initiation. A LED matrix is developed in our laboratory using two types of LEDs and a combined photodiagnosis/photodynamic theory device applicable for clinical practice is built. Geometrically matrix is formed in such way that power density at 635 nm is about 40 mW/cm2\text{}^{2}, which allow to reach treatment doses for a 15-20 min irradiation depending of the lesion size in the focus of the system. The therapeutic mode of system developed can be used also with some other photosensitizers from the porphyrins derivatives family

    Development of Low-Cost Photodynamic Therapy Device

    No full text
    Photodiagnosis and photodynamic therapy of non-melanoma skin cancers using delta-aminolevulinic acid/protoporphyrin IX (5-ALA/PpIX) give a combined application with broadest dissemination in the current clinical practice. The problems with using of lasers as light sources are the expenses associated with the operation of these types of installations. This is why we test the capability of cheaper sources - light-emitting diodes at 405 nm for fluorescence excitation of PpIX and 635 nm for photodynamic action initiation. A LED matrix is developed in our laboratory using two types of LEDs and a combined photodiagnosis/photodynamic theory device applicable for clinical practice is built. Geometrically matrix is formed in such way that power density at 635 nm is about 40 mW/cm2\text{}^{2}, which allow to reach treatment doses for a 15-20 min irradiation depending of the lesion size in the focus of the system. The therapeutic mode of system developed can be used also with some other photosensitizers from the porphyrins derivatives family

    Homogeneous vs. patient specific breast models for Monte Carlo evaluation of mean glandular dose in mammography

    No full text
    Purpose To compare, via Monte Carlo simulations, homogeneous and non-homogenous breast models adopted for mean glandular dose (MGD) estimates in mammography vs. patient specific digital breast phantoms. Methods We developed a GEANT4 Monte Carlo code simulating four homogenous cylindrical breast models featured as follows: (1) semi-cylindrical section enveloped in a 5-mm adipose layer; (2) semi-elliptical section with a 4-mm thick skin; (3) semi-cylindrical section with a 1.45-mm skin layer; (4) semi-cylindrical section in a 1.45-mm skin layer and 2-mm subcutaneous adipose layer. Twenty patient specific digital breast phantoms produced from a dedicated CT scanner were assumed as reference in the comparison. We simulated two spectra produced from two anode/filter combinations. An additional digital breast phantom was produced via BreastSimulator software. Results With reference to the results for patient-specific breast phantoms and for W/Al spectra, models #1 and #3 showed higher MGD values by about 1% (ranges [–33%; +28%] and [−31%; +30%], respectively), while for model #4 it was 2% lower (range [−34%; +26%]) and for model #2 –11% (range [−39%; +14%]), on average. On the other hand, for W/Rh spectra, models #1 and #4 showed lower MGD values by 2% and 1%, while for model #2 and #3 it was 14% and 8% lower, respectively (ranges [−43%; +13%] and [−41%; +21%]). The simulation with the digital breast phantom produced with BreastSimulator showed a MGD overestimation of +33%. Conclusions The homogeneous breast models led to maximum MGD underestimation and overestimation of 43% and 28%, respectively, when compared to patient specific breast phantoms derived from clinical CT scans

    In-line phase-contrast breast tomosynthesis: A phantom feasibility study at a synchrotron radiation facility

    Get PDF
    The major objective is to adopt, apply and test developed in-house algorithms for volumetric breast reconstructions from projection images, obtained in in-line phase-contrast mode. Four angular sets, each consisting of 17 projection images obtained from four physical phantoms, were acquired at beamline ID17, European Synchroton Radiation Facility, Grenoble, France. The tomosynthesis arc was ±32°. The physical phantoms differed in complexity of texture and introduced features of interest. Three of the used phantoms were in-house developed, and made of epoxy resin, polymethyl-methacrylate and paraffin wax, while the fourth phantom was the CIRS BR3D. The projection images had a pixel size of 47 μm × 47 μm. Tomosynthesis images were reconstructed with standard shift-and-add (SAA) and filtered backprojection (FBP) algorithms. It was found that the edge enhancement observed in planar x-ray images is preserved in tomosynthesis images from both phantoms with homogeneous and highly heterogeneous backgrounds. In case of BR3D, it was found that features not visible in the planar case were well outlined in the tomosynthesis slices. In addition, the edge enhancement index calculated for features of interest was found to be much higher in tomosynthesis images reconstructed with FBP than in planar images and tomosynthesis images reconstructed with SAA. The comparison between images reconstructed by the two reconstruction algorithms shows an advantage for the FBP method in terms of better edge enhancement. Phase-contrast breast tomosynthesis realized in in-line mode benefits the detection of suspicious areas in mammography images by adding the edge enhancement effect to the reconstructed slices

    Radiomics software for breast imaging optimization and simulation studies

    No full text
    Background and Objective: The development, control and optimisation of new x-ray breast imaging modalities could benefit from a quantitative assessment of the resulting image textures. The aim of this work was to develop a software tool for routine radiomics applications in breast imaging, which will also be available upon request. Methods: The tool (developed in MATLAB) allows image reading, selection of Regions of Interest (ROI), analysis and comparison. Requirements towards the tool also included convenient handling of common medical and simulated images, building and providing a library of commonly applied algorithms and a friendly graphical user interface. Initial set of features and analyses have been selected after a literature search. Being open, the tool can be extended, if necessary. Results: The tool allows semi-automatic extracting of ROIs, calculating and processing a total of 23 different metrics or features in 2D images and/or in 3D image volumes. Computations of the features were verified against computations with other software packages performed with test images. Two case studies illustrate the applicability of the tool – (i) features on a series of 2D ‘left’ and ‘right’ CC mammograms acquired on a Siemens Inspiration system were computed and compared, and (ii) evaluation of the suitability of newly proposed and developed breast phantoms for x-ray-based imaging based on reference values from clinical mammography images. Obtained results could steer the further development of the physical breast phantoms. Conclusions: A new image analysis toolbox was realized and can now be used in a multitude of radiomics applications, on both clinical and test images
    corecore