16 research outputs found

    Systematic evaluation of immune regulation and modulation

    Get PDF
    Cancer immunotherapies are showing promising clinical results in a variety of malignancies. Monitoring the immune as well as the tumor response following these therapies has led to significant advancements in the field. Moreover, the identification and assessment of both predictive and prognostic biomarkers has become a key component to advancing these therapies. Thus, it is critical to develop systematic approaches to monitor the immune response and to interpret the data obtained from these assays. In order to address these issues and make recommendations to the field, the Society for Immunotherapy of Cancer reconvened the Immune Biomarkers Task Force. As a part of this Task Force, Working Group 3 (WG3) consisting of multidisciplinary experts from industry, academia, and government focused on the systematic assessment of immune regulation and modulation. In this review, the tumor microenvironment, microbiome, bone marrow, and adoptively transferred T cells will be used as examples to discuss the type and timing of sample collection. In addition, potential types of measurements, assays, and analyses will be discussed for each sample. Specifically, these recommendations will focus on the unique collection and assay requirements for the analysis of various samples as well as the high-throughput assays to evaluate potential biomarkers

    Heterogeneity in retinoblastoma : a tale of molecules and models

    Get PDF
    Retinoblastoma, an intraocular pediatric cancer, develops in the embryonic retina following biallelic loss of RB1. However, there is a wide range of genetic and epigenetic changes that can affect RB1 resulting in different clinical outcomes. In addition, other transformations, such as MYCN amplification, generate particularly aggressive tumors, which may or may not be RB1 independent. Recognizing the cellular characteristics required for tumor development, by identifying the elusive cell-of-origin for retinoblastoma, would help us understand the development of these tumors. In this review we summarize the heterogeneity reported in retinoblastoma on a molecular, cellular and tissue level. We also discuss the challenging heterogeneity in current retinoblastoma models and suggest future platforms that could contribute to improved understanding of tumor initiation, progression and metastasis in retinoblastoma, which may ultimately lead to more patient-specific treatments

    Antigen delivery to macrophages using liposomal nanoparticles targeting Sialoadhesin/CD169

    Get PDF
    Sialoadhesin (Sn, Siglec-1, CD169) is a member of the sialic acid binding Ig-like lectin (siglec) family expressed on macrophages. Its macrophage specific expression makes it an attractive target for delivering antigens to tissue macrophages via Sn-mediated endocytosis. Here we describe a novel approach for delivering antigens to macrophages using liposomal nanoparticles displaying high affinity glycan ligands of Sn. The Sn-targeted liposomes selectively bind to and are internalized by Sn-expressing cells, and accumulate intracellularly over time. Our results show that ligand decorated liposomes are specific for Sn, since they are taken up by bone marrow derived macrophages that are derived from wild type but not Sn−/− mice. Importantly, the Sn-targeted liposomes dramatically enhance the delivery of antigens to macrophages for presentation to and proliferation of antigen-specific T cells. Together, these data provide insights into the potential of cell-specific targeting and delivery of antigens to intracellular organelles of macrophages using Sn-ligand decorated liposomal nanoparticles

    A copia-like element in Pisum demonstrates the uses of dispersed repeated sequences in genetic analysis

    No full text
    A DNA sequence between two legumin genes in Pisum is a member of the copia-like class of retrotransposons and represents one member of a polymorphic and heterogeneous dispersed repeated sequence family in Pisum. This sequence can be exploited in genetic studies either by RFLP analysis where several markers can be scored together, or the segregation of individual elements can be followed after PCR amplification of specific members
    corecore