94 research outputs found

    AAV-mediated in vivo knockdown of luciferase using combinatorial RNAi and U1i

    Get PDF
    RNA interference (RNAi) has been successfully employed for specific inhibition of gene expression; however, safety and delivery of RNAi remain critical issues. We investigated the combinatorial use of RNAi and U1 interference (U1i). U1i is a gene-silencing technique that acts on the pre-mRNA by preventing polyadenylation. RNAi and U1i have distinct mechanisms of action in different cellular compartments and their combined effect allows usage of minimal doses, thereby avoiding toxicity while retaining high target inhibition. As a proof of concept, we investigated knockdown of the firefly luciferase reporter gene by combinatorial use of RNAi and U1i, and evaluated their inhibitory potential both in vitro and in vivo. Co-transfection of RNAi and U1i constructs showed additive reduction of luciferase expression up to 95% in vitro. We attained similar knockdown when RNAi and U1i constructs were hydrodynamically transfected into murine liver, demonstrating for the first time successful in vivo application of U1i. Moreover, we demonstrated long-term gene silencing by AAV-mediated transduction of murine muscle with RNAi/U1i constructs targeting firefly luciferase. In conclusion, these results provide a proof of principle for the combinatorial use of RNAi and U1i to enhance target gene knockdown in vivo

    GFAP-Driven GFP Expression in Activated Mouse Muller Glial Cells Aligning Retinal Blood Vessels Following Intravitreal Injection of AAV2/6 Vectors

    Get PDF
    Background: Muller cell gliosis occurs in various retinal pathologies regardless of the underlying cellular defect. Because activated Muller glial cells span the entire retina and align areas of injury, they are ideal targets for therapeutic strategies, including gene therapy.Methodology/Principal Findings: We used adeno-associated viral AAV2/6 vectors to transduce mouse retinas. The transduction pattern of AAV2/6 was investigated by studying expression of the green fluorescent protein (GFP) transgene using scanning-laser ophthalmoscopy and immuno-histochemistry. AAV2/6 vectors transduced mouse Muller glial cells aligning the retinal blood vessels. However, the transduction capacity was hindered by the inner limiting membrane (ILM) and besides Muller glial cells, several other inner retinal cell types were transduced. To obtain Muller glial cell-specific transgene expression, the cytomegalovirus (CMV) promoter was replaced by the glial fibrillary acidic protein (GFAP) promoter. Specificity and activation of the GFAP promoter was tested in a mouse model for retinal gliosis. Mice deficient for Crumbs homologue 1 (CRB1) develop gliosis after light exposure. Light exposure of Crb1(-/-) retinas transduced with AAV2/6-GFAP-GFP induced GFP expression restricted to activated Muller glial cells aligning retinal blood vessels.Conclusions/Significance: Our experiments indicate that AAV2 vectors carrying the GFAP promoter are a promising tool for specific expression of transgenes in activated glial cells

    An overview of tissue engineering approaches for management of spinal cord injuries

    Get PDF
    Severe spinal cord injury (SCI) leads to devastating neurological deficits and disabilities, which necessitates spending a great deal of health budget for psychological and healthcare problems of these patients and their relatives. This justifies the cost of research into the new modalities for treatment of spinal cord injuries, even in developing countries. Apart from surgical management and nerve grafting, several other approaches have been adopted for management of this condition including pharmacologic and gene therapy, cell therapy, and use of different cell-free or cell-seeded bioscaffolds. In current paper, the recent developments for therapeutic delivery of stem and non-stem cells to the site of injury, and application of cell-free and cell-seeded natural and synthetic scaffolds have been reviewed

    Nonviral Approaches for Neuronal Delivery of Nucleic Acids

    Get PDF
    The delivery of therapeutic nucleic acids to neurons has the potential to treat neurological disease and spinal cord injury. While select viral vectors have shown promise as gene carriers to neurons, their potential as therapeutic agents is limited by their toxicity and immunogenicity, their broad tropism, and the cost of large-scale formulation. Nonviral vectors are an attractive alternative in that they offer improved safety profiles compared to viruses, are less expensive to produce, and can be targeted to specific neuronal subpopulations. However, most nonviral vectors suffer from significantly lower transfection efficiencies than neurotropic viruses, severely limiting their utility in neuron-targeted delivery applications. To realize the potential of nonviral delivery technology in neurons, vectors must be designed to overcome a series of extra- and intracellular barriers. In this article, we describe the challenges preventing successful nonviral delivery of nucleic acids to neurons and review strategies aimed at overcoming these challenges

    Intravitreal injection of adeno-associated viral vectors result in the transduction of different types of retinal neurons in neonatal and adult rats: A comparison with lentiviral vectors

    No full text
    Replication-deficient viral vectors encoding the marker gene green fluorescent protein (GFP) were injected into the vitreous of newborn, juvenile (P14), and adult rats. We tested two different types of modified virus: adeno-associated viral-2-GFP (AAV-GFP) and lentiviral-GFP vectors (LV-GFP). The extent of retinal cell transduction in different-aged animals was compared 7, 21, and 70 days after eye injections. At all postinjection times, LV-GFP transduction was mostly limited to pigment epithelium and cells in sclera and choroid. In contrast, transduction of large numbers of neural retinal cells was seen 21 and 70 days after AAV-GFP injections. AAV-GFP predominantly transduced neurons, although GFP-positive Müller cells were seen. All neuronal classes were labeled, but the extent of transduction for a given class varied depending on injection age. After P0 injections about 50% of transduced cells were photoreceptors and 30-40% were amacrine or bipolar cells. After adult injections 60-70% of transduced cells were retinal ganglion cells. In adults many GFP-positive retinal axons were traced through the optic nerve/tract and terminal arbors were visualized in central targets

    Transduced Schwann cells promote axon growth and myelination after spinal cord injury

    No full text
    We sought to directly compare growth and myelination of local and supraspinal axons by implanting into the injured spinal cord Schwann cells (SCs) transduced ex vivo with adenoviral (AdV) or lentiviral (LV) vectors encoding a bifunctional neurotrophin molecule (D15A). D15A mimics actions of both neurotrophin-3 and brain-derived neurotrophic factor. Transduced SCs were injected into the injury center 1 week after a moderate thoracic (T8) adult rat spinal cord contusion. D15A expression and bioactivity in vitro; D15A levels in vivo; and graft volume, SC number, implant axon number and cortico-, reticulo-, raphe-, coerulo-spinal and sensory axon growth were determined for both types of vectors employed to transduce SCs. ELISAs revealed that D15A-secreting SC implants contained significantly higher levels of neurotrophin than non-transduced SC and AdV/GFP and LV/GFP SC controls early after implantation. At 6 weeks post-implantation, D15A-secreting SC grafts exhibited 5-fold increases in graft volume, SC number and myelinated axon counts and a 3-fold increase in myelinated to unmyelinated (ensheathed) axon ratios. The total number of axons within grafts of LV/GFP/D15A SCs was estimated to be over 70,000. Also 5-HT, DβH, and CGRP axon length was increased up to 5-fold within D15A grafts. In sum, despite qualitative differences using the two vectors, increased neurotrophin secretion by the implanted D15A SCs led to the presence of a significantly increased number of axons in the contusion site. These results demonstrate the therapeutic potential for utilizing neurotrophin-transduced SCs to repair the injured spinal cord

    Practical Wisdom in Ancient Rome: Public Action and Contemplative Life

    Get PDF
    Producción CientíficaThis chapter covers the main moments and authors of Roman thought in the field of practical wisdom. The contents of this proposal integrate a rich legacy within coexist, not without difficulties, two ways of understanding life. The sophisticated Hellenistic philosophy, which since the end of the Second Macedonian War and after the fall of Carthage got to become more and more present in the cultural scenes of the republican Rome; and the traditional Roman perspective, more pragmatic than reflexive, more agrarian than navigating, more realistic than idealistic. After analyzing both perspectives, we present the main proposals on practical wisdom during the republican period until the Principate: the traditionalist, from the hand of Cato the Censor; the epicurean, by Lucretius; the eclectic conciliation, developed by Cicero; and, finally, the Roman Stoicism, for which we will rely on the figure of Seneca, as one of his three top representatives and also for writing in Latin, unlike Epictetus and Marcus Aurelius. We intend to offer not so much an exhaustive work, but rather a map that allows to recognize the main veins of Roman practical thought

    Methotrexate Normalizes Up-Regulated Folate Pathway Genes in Rheumatoid Arthritis

    No full text
    Objective The folate antagonist methotrexate (MTX) is an anchor drug in the treatment of rheumatoid arthritis (RA), but its mechanism of action with regard to the impact on folate metabolism remains elusive. The aim of the present study was to investigate the cellular pharmacologic impact of MTX on peripheral blood cells, by comparing MTX-treated RA patients to MTX-naive RA patients and healthy controls. Methods Gene expression microarray data were used to investigate the expression of 17 folate pathway genes by peripheral blood cells from a cohort of 25 RA patients treated with MTX, 10 MTX-naive RA patients starting treatment with MTX, and 15 healthy controls (test cohort). Multiplex real-time polymerase chain reaction was used to validate the results in an independent cohort, consisting of 151 RA patients treated with MTX, 28 MTX-naive RA patients starting treatment with MTX, and 24 healthy controls (validation cohort). Results Multiple folate metabolism-related genes were consistently and significantly altered between the 3 groups in both cohorts. Concurrent with evidence of an immune-activation gene signature in MTX-naive RA patients, significant up-regulation of the folate-metabolizing enzymes γ-glutamyl hydrolase and dihydrofolate reductase, as well as the MTX/folate efflux transporters ABCC2 and ABCC5, was observed in the MTX-naive RA group compared to healthy controls. Strikingly, MTX treatment of RA patients normalized these differential gene expression levels to the levels observed in healthy controls. Conclusion These results suggest that under inflammatory conditions, basal folate metabolism in the peripheral blood cells of RA patients is markedly up-regulated, and treatment with MTX restores folate metabolism to normal levels. Identification of this novel gene signature provides insight into the mechanism of action of MTX, thus paving the way for development of novel folate metabolism-targeted therapies. Copyright © 2013 by the American College of Rheumatology
    corecore