107 research outputs found

    Primers for Castilleja and their Utility Across Orobanchaceae: II. Single‐copy nuclear loci

    Get PDF
    Premise of the study: We developed primers targeting nuclear loci in Castilleja with the goal of reconstructing the evolutionary history of this challenging clade. These primers were tested across other major clades in Orobanchaceae to assess their broader utility.Methods and Results: We assembled low-coverage genomes for three taxa in Castilleja and developed primer combinations for the single-copy conserved ortholog set (COSII) and the pentatricopeptide repeat (PPR) gene family. These primer combinations were designed to take advantage of the Fluidigm microfluidic PCR platform and are well suited for high-throughput sequencing applications. Eighty-seven primers were designed for Castilleja, and 27 were found to have broader utility in Orobanchaceae.Conclusions: These results demonstrate the utility of these primers, not only across Castilleja, but for other lineages within Orobanchaceae as well. This expanded molecular toolkit will be an asset to future phylogenetic studies in Castilleja and throughout Orobanchaceae

    Toward standard practices for sharing computer code and programs in neuroscience

    Get PDF
    Computational techniques are central in many areas of neuroscience and are relatively easy to share. This paper describes why computer programs underlying scientific publications should be shared and lists simple steps for sharing. Together with ongoing efforts in data sharing, this should aid reproducibility of research.This article is based on discussions from a workshop to encourage sharing in neuroscience, held in Cambridge, UK, December 2014. It was financially supported and organized by the International Neuroinformatics Coordinating Facility (http://www.incf.org), with additional support from the Software Sustainability institute (http://www.software.ac.uk). M.H. was supported by funds from the German federal state of Saxony-Anhalt and the European Regional Development Fund (ERDF), Project: Center for Behavioral Brain Sciences

    Bann_spdelim_scripts

    No full text
    All python scripts associated with the genomic analyses for this stud

    Data from: Accounting for genotype uncertainty in the estimation of allele frequencies in autopolyploids

    No full text
    Despite the increasing opportunity to collect large-scale data sets for population genomic analyses, the use of high-throughput sequencing to study populations of polyploids has seen little application. This is due in large part to problems associated with determining allele copy number in the genotypes of polyploid individuals (allelic dosage uncertainty–ADU), which complicates the calculation of important quantities such as allele frequencies. Here, we describe a statistical model to estimate biallelic SNP frequencies in a population of autopolyploids using high-throughput sequencing data in the form of read counts. We bridge the gap from data collection (using restriction enzyme based techniques [e.g. GBS, RADseq]) to allele frequency estimation in a unified inferential framework using a hierarchical Bayesian model to sum over genotype uncertainty. Simulated data sets were generated under various conditions for tetraploid, hexaploid and octoploid populations to evaluate the model's performance and to help guide the collection of empirical data. We also provide an implementation of our model in the R package polyfreqs and demonstrate its use with two example analyses that investigate (i) levels of expected and observed heterozygosity and (ii) model adequacy. Our simulations show that the number of individuals sampled from a population has a greater impact on estimation error than sequencing coverage. The example analyses also show that our model and software can be used to make inferences beyond the estimation of allele frequencies for autopolyploids by providing assessments of model adequacy and estimates of heterozygosity

    Data from: Genomic signatures of sympatric speciation with historical and contemporary gene flow in a tropical anthozoan (Hexacorallia: Actiniaria)

    No full text
    Sympatric diversification is increasingly thought to have played an important role in the evolution of biodiversity around the globe. However, an in situ sympatric origin for co-distributed taxa is difficult to demonstrate empirically because different evolutionary processes can lead to similar biogeographic outcomes- especially in ecosystems that can readily facilitate secondary contact due to a lack of hard barriers to dispersal. Here we use a genomic (ddRADseq), model-based approach to delimit a species complex of tropical sea anemones that are co-distributed on coral reefs throughout the Tropical Western Atlantic. We use coalescent simulations in fastsimcoal2 to test competing diversification scenarios that span the allopatric-sympatric continuum. We recover support that the corkscrew sea anemone Bartholomea annulata (Le Sueur, 1817) is a cryptic species complex, co-distributed throughout its range. Simulation and model selection analyses suggest these lineages arose in the face of historical and contemporary gene flow, supporting a sympatric origin, but an alternative secondary contact model also receives appreciable model support. Leveraging the genome of Exaiptasia diaphana we identify five loci under divergent selection between cryptic B. annulata lineages that fall within mRNA transcripts or CDS regions. Our study provides a rare empirical, genomic example of sympatric speciation in a tropical anthozoan. Finally, these data represent the first range-wide molecular study of any tropical sea anemone, underscoring that anemone diversity is under described in the tropics, and highlighting the need for additional systematic studies into these ecologically and economically important species

    Bannulata_spdelim_FINAL_intraspecific_arlequin

    No full text
    Arlequin input file of Bartholomea annulata ddRADseq for intraspecific population genetic structure analyse

    Perl script for functional annotations

    No full text
    Hit-desc.pl - Perl script for adding functional annotations to contigs using BLAST output (-outfmt 6). Note: This script uses regular expressions that are specific to targeting the accession numbers of our contigs and those that were used for BLAST searches. It is to be used as a reference for writing similar scripts for similar purposes but will not work as is for datasets other than our own. Requires an installation of BioPerl. Running too much BLAST output at once will kick you off of the NCBI server, so restrict the number of queries to ~500
    corecore