328 research outputs found

    Few-mode fibers and AO-assisted high resolution spectroscopy: coupling efficiency and modal noise mitigation

    Full text link
    NIRPS (Near Infra-Red Planet Searcher) is an AO-assisted and fiber-fed spectrograph for high precision radial velocity measurements that will operate in the YJH-bands. While using an AO system in such instrument is generally considered to feed a single-mode fiber, NIRPS is following a different path by using a small multi-mode fiber (more specifically called "few-mode fiber"). This choice offers an excellent trade-off by allowing to design a compact cryogenic spectrograph, while maintaining a high coupling efficiency under bad seeing conditions and for faint stars. The main drawback resides in a much more important modal-noise, a problem that has to be tackled for allowing 1m/s precision radial velocity measurements. We study the impact of using an AO system to couple light into few-mode fibers. We focus on two aspects: the coupling efficiency into few-mode fibers and the question of modal noise and scrambling. We show first that NIRPS can reach coupling >= 50% up to magnitude I=12, and offer a gain of 1-2 magnitudes over a single-mode solution. We finally show that the best strategy to mitigate modal noise with the AO system is among the simplest: a continuous tip-tilt scanning of the fiber core.Comment: 10 pages, 5 figures. Proceeding of the AO4ELT5 conferenc

    Astrophotonic micro-spectrographs in the era of ELTs

    Full text link
    The next generation of Extremely Large Telescopes (ELT), with diameters up to 39 meters, will start opera- tion in the next decade and promises new challenges in the development of instruments. The growing field of astrophotonics (the use of photonic technologies in astronomy) can partly solve this problem by allowing mass production of fully integrated and robust instruments combining various optical functions, with the potential to reduce the size, complexity and cost of instruments. In this paper, we focus on developments in integrated micro-spectrographs and their potential for ELTs. We take an inventory of the identified technologies currently in development, and compare the performance of the different concepts. We show that in the current context of single-mode instruments, integrated spectrographs making use of, e.g., a photonic lantern can be a solution to reach the desired performance. However, in the longer term, there is a clear need to develop multimode devices to improve overall the throughput and sensitivity, while decreasing the instrument complexity.Comment: 9 pages. 2 figures. Proceeding of SPIE 9147 "Ground-based and Airborne Instrumentation for Astronomy V

    Roche-lobe filling factor of mass-transferring red giants - the PIONIER view

    Full text link
    Using the PIONIER visitor instrument that combines the light of the four Auxiliary Telescopes of ESO's Very Large Telescope Interferometer, we measure precisely the diameters of several symbiotic and related stars: HD 352, HD 190658, V1261 Ori, ER Del, FG Ser, and AG Peg. These diameters - in the range of 0.6 to 2.3 milli-arcseconds - are used to assess the filling factor of the Roche lobe of the mass-losing giants and provide indications on the nature of the ongoing mass transfer. We also provide the first spectroscopic orbit of ER Del, based on CORAVEL and HERMES/Mercator observations. The system is found to have an eccentric orbit with a period of 5.7 years. In the case of the symbiotic star FG Ser, we find that the diameter is changing by 13% over the course of 41 days, while the observations of HD 352 are indicative of an elongation. Both these stars are found to have a Roche filling factor close to 1, as is most likely the case for HD 190658 as well, while the three other stars have factors below 0.5-0.6. Our observations reveal the power of interferometry for the study of interacting binary stars - the main limitation in our conclusions being the poorly known distances of the objects.Comment: A&A, in pres

    How Data Protection Regulation Affects Startup Innovation

    Get PDF
    While many data-driven businesses have seen rapid growth in recent years, their business development might be highly contingent upon data protection regulation. While it is often claimed that stricter regulation penalizes firms, there is only scarce empirical evidence for this. We therefore study how data protection regulation affects startup innovation, exploring this question during the ongoing introduction of the EU General Data Protection Regulation (GDPR). Our results show that the effects of data protection regulation on startup innovation are complex: it simultaneously stimulates and constrains innovation. We identify six distinct firm responses to the effects of the GDPR; three where it stimulates innovation, and three where it constrains it. We furthermore identify two key stipulations in the GDPR that account for the most important innovation constraints. Implications and potential policy responses are discussed

    The Influence of Strategic Patenting on Companies’ Patent Portfolios

    Full text link
    This paper analyses whether strategic motives for patenting influence the characteristics of companies’ patent portfolios. We use the number of citations and oppositions to represent these characteristics. The investigation is based on survey and patent data from German companies. We find clear evidence that the companies’ patenting strategies explain the characteristics of their patent portfolios. First, companies using patents to protect their technological knowledge base receive a higher number of citations for their patents. Second, the motive of offensive – but not of defensive – blocking is related to a higher incidence of oppositions, whereas companies using patents as bartering chips in collaborations receive fewer oppositions to their patents

    Estimating the phase in ground-based interferometry: performance comparison between single-mode and multimode schemes

    Full text link
    In this paper we compare the performance of multi and single-mode interferometry for the estimation of the phase of the complex visibility. We provide a theoretical description of the interferometric signal which enables to derive the phase error in presence of detector, photon and atmospheric noises, for both multi and single-mode cases. We show that, despite the loss of flux occurring when injecting the light in the single-mode component (i.e. single-mode fibers, integrated optics), the spatial filtering properties of such single-mode devices often enable higher performance than multimode concepts. In the high flux regime speckle noise dominated, single-mode interferometry is always more efficient, and its performance is significantly better when the correction provided by adaptive optics becomes poor, by a factor of 2 and more when the Strehl ratio is lower than 10%. In low light level cases (detector noise regime), multimode interferometry reaches better performance, yet the gain never exceeds 20%, which corresponds to the percentage of photon loss due to the injection in the guides. Besides, we demonstrate that single-mode interferometry is also more robust to the turbulence in both cases of fringe tracking and phase referencing, at the exception of narrow field of views (<1 arcsec).Comment: 9 pages (+ 11 online material appendices) -- 8 Figures. Accepted in A&

    GRAVITY: the Calibration Unit

    Full text link
    We present in this paper the design and characterisation of a new sub-system of the VLTI 2nd generation instrument GRAVITY: the Calibration Unit. The Calibration Unit provides all functions to test and calibrate the beam combiner instrument: it creates two artificial stars on four beams, and dispose of four delay lines with an internal metrology. It also includes artificial stars for the tip-tilt and pupil guiding systems, as well as four metrology pick-up diodes, for tests and calibration of the corresponding sub-systems. The calibration unit also hosts the reference targets to align GRAVITY to the VLTI, and the safety shutters to avoid the metrology light to propagate in the VLTI-lab. We present the results of the characterisation and validtion of these differrent sub-units.Comment: 12 pages, 11 figures. Proceeding of SPIE 9146 "Optical and Infrared Interferometry IV

    The GRAVITY metrology system: modeling a metrology in optical fibers

    Full text link
    GRAVITY is the second generation VLT Interferometer (VLTI) instrument for high-precision narrow-angle astrometry and phase-referenced interferometric imaging. The laser metrology system of GRAVITY is at the heart of its astrometric mode, which must measure the distance of 2 stars with a precision of 10 micro-arcseconds. This means the metrology has to measure the optical path difference between the two beam combiners of GRAVITY to a level of 5 nm. The metrology design presents some non-common paths that have consequently to be stable at a level of 1 nm. Otherwise they would impact the performance of GRAVITY. The various tests we made in the past on the prototype give us hints on the components responsible for this error, and on their respective contribution to the total error. It is however difficult to assess their exact origin from only OPD measurements, and therefore, to propose a solution to this problem. In this paper, we present the results of a semi-empirical modeling of the fibered metrology system, relying on theoretical basis, as well as on characterisations of key components. The modeling of the metrology system regarding various effects, e.g., temperature, waveguide heating or mechanical stress, will help us to understand how the metrology behave. The goals of this modeling are to 1) model the test set-ups and reproduce the measurements (as a validation of the modeling), 2) determine the origin of the non-common path errors, and 3) propose modifications to the current metrology design to reach the required 1nm stability.Comment: 20 pages, 19 figures. Proceeding of SPIE 9146 "Optical and Infrared Interferometry IV
    • …
    corecore