29 research outputs found

    A Configurationally-Resolved-Super-Transition-Arrays method for calculation of the spectral absorption coefficient in hot plasmas

    Full text link
    A new method, 'Configurationally-Resolved-Super-Transition-Arrays', for calculation of the spectral absorption coefficient in hot plasmas is presented. In the new method, the spectrum of each Super-Transition-Array is evaluated as the Fourier transform of a single Complex Pseudo Partition Function, which represents the exact analytical sum of the contributions of all constituting unresolved transition arrays sharing the same set of one-electron solutions. Thus, in the new method, the spectrum of each Super-Transition-Array is resolved down to the level of the (unresolved) transition arrays. It is shown that the corresponding spectrum, evaluated by the traditional Super-Transition-Arrays (STA) method [A. Bar Shalom, J. Oreg, W.H. Goldstein, D. Shvarts and A. Zigler, Phys. Rev. A 40, 3183 (1989)], is just the coarse grained Gaussian approximation of the Configurationally-Resolved-Super-Transition-Array. A new computer program is presented, capable of evaluating the absorption coefficient by both the new configurationally resolved and the traditional Gaussian Super-Transition-Arrays methods. A numerical example of gold at temperature 1keV and density 0.5 gr/cm^{3}, is presented, demonstrating the simplicity, efficiency and accuracy of the new method

    Results of the MTLRS-1 upgrade

    Get PDF
    In this report, the results of the upgrade of the German Modular Transportable Laser Ranging System MTLRS-1 are summarized. A short description of the new components and their influence on the system accuracy is given. It is shown, that the single shot accuracy of the MTLRS-1 has been improved from 5 cm to 1 cm

    An equation of state from cool-dense fluids to hot gases for mixed elements

    Get PDF
    An equation of state for the domain extending from hot gases to cool-dense fluids is formulated for a hydrogen-helium mixture. The physical processes take account of temperature ionization and dissociation, electron degeneracy, Coulomb coupling and pressure ionization. Pressure ionization and Coulomb coupling are studied with simple and comprehensive modeling. A single and complete algorithm is achieved with explicit expressions available for the whole domain from hot gases to cool dense fluids (T>102T>10^2% K). Pressure ionization and Coulomb coupling have been examined for their contributions to the pressure and internal energy. The result reveals that their contributions smooth the variation of the pressure and internal energy in the region of pressure ionization even at very low temperatures.Comment: 10 pages, 8 figures, ApJ, accepted, E-mail: [email protected]

    Iron and Nickel spectral opacity calculations in conditions relevant for pulsating stellar envelopes and experiments

    Full text link
    Seismology of stars is strongly developing. To address this question we have formed an international collaboration OPAC to perform specific experimental measurements, compare opacity calculations and improve the opacity calculations in the stellar codes [1]. We consider the following opacity codes: SCO, CASSANDRA, STA, OPAS, LEDCOP, OP, SCO-RCG. Their comparison has shown large differences for Fe and Ni in equivalent conditions of envelopes of type II supernova precursors, temperatures between 15 and 40 eV and densities of a few mg/cm3 [2, 3, 4]. LEDCOP, OPAS, SCO-RCG structure codes and STA give similar results and differ from OP ones for the lower temperatures and for spectral interval values [3]. In this work we discuss the role of Configuration Interaction (CI) and the influence of the number of used configurations. We present and include in the opacity code comparisons new HULLAC-v9 calculations [5, 6] that include full CI. To illustrate the importance of this effect we compare different CI approximations (modes) available in HULLAC-v9 [7]. These results are compared to previous predictions and to experimental data. Differences with OP results are discussed.Comment: 4 pages, 3 figures, conference Inertial Fusion Sciences and Applications, Bordeaux, 12th to 16th September 2011; EPJ web of Conferences 201

    Radiative properties of stellar plasmas and open challenges

    Full text link
    The lifetime of solar-like stars, the envelope structure of more massive stars, and stellar acoustic frequencies largely depend on the radiative properties of the stellar plasma. Up to now, these complex quantities have been estimated only theoretically. The development of the powerful tools of helio- and astero- seismology has made it possible to gain insights on the interiors of stars. Consequently, increased emphasis is now placed on knowledge of the monochromatic opacity coefficients. Here we review how these radiative properties play a role, and where they are most important. We then concentrate specifically on the envelopes of β\beta Cephei variable stars. We discuss the dispersion of eight different theoretical estimates of the monochromatic opacity spectrum and the challenges we need to face to check these calculations experimentally.Comment: 6 pages, 5 figures, in press (conference HEDLA 2010

    Nucleus-Electron Model for States Changing from a Liquid Metal to a Plasma and the Saha Equation

    Full text link
    We extend the quantal hypernetted-chain (QHNC) method, which has been proved to yield accurate results for liquid metals, to treat a partially ionized plasma. In a plasma, the electrons change from a quantum to a classical fluid gradually with increasing temperature; the QHNC method applied to the electron gas is in fact able to provide the electron-electron correlation at arbitrary temperature. As an illustrating example of this approach, we investigate how liquid rubidium becomes a plasma by increasing the temperature from 0 to 30 eV at a fixed normal ion-density 1.03×1022/cm31.03 \times 10^{22}/cm^3. The electron-ion radial distribution function (RDF) in liquid Rb has distinct inner-core and outer-core parts. Even at a temperature of 1 eV, this clear distinction remains as a characteristic of a liquid metal. At a temperature of 3 eV, this distinction disappears, and rubidium becomes a plasma with the ionization 1.21. The temperature variations of bound levels in each ion and the average ionization are calculated in Rb plasmas at the same time. Using the density-functional theory, we also derive the Saha equation applicable even to a high-density plasma at low temperatures. The QHNC method provides a procedure to solve this Saha equation with ease by using a recursive formula; the charge population of differently ionized species are obtained in Rb plasmas at several temperatures. In this way, it is shown that, with the atomic number as the only input, the QHNC method produces the average ionization, the electron-ion and ion-ion RDF's, and the charge population which are consistent with the atomic structure of each ion for a partially ionized plasma.Comment: 28 pages(TeX) and 11 figures (PS

    Theoretical and experimental activities on opacities for a good interpretation of seismic stellar probes

    Full text link
    Opacity calculations are basic ingredients of stellar modelling. They play a crucial role in the interpretation of acoustic modes detected by SoHO, COROT and KEPLER. In this review we present our activities on both theoretical and experimental sides. We show new calculations of opacity spectra and comparisons between eight groups who produce opacity spectra calculations in the domain where experiments are scheduled. Real differences are noticed with real astrophysical consequences when one extends helioseismology to cluster studies of different compositions. Two cases are considered presently: (1) the solar radiative zone and (2) the beta Cephei envelops. We describe how our experiments are performed and new preliminary results on nickel obtained in the campaign 2010 at LULI 2000 at Polytechnique.Comment: 6 pages, 4 figures, invited talk at SOHO2
    corecore