341 research outputs found
Effects produced by oscillations applied to nonlinear dynamic systems: a general approach and examples
Predict-prevent control method for perturbed excitable systems
We present a control method based on two steps: prediction and prevention.
For prediction we use the anticipated synchronization scheme, considering
unidirectional coupling between excitable systems in a master-slave
configuration. The master is the perturbed system to be controlled, meanwhile
the slave is an auxiliary system which is used to predict the master's
behavior. We demonstrate theoretically and experimentally that an efficient
control may be achieved.Comment: 4 pages, 5 figure
Thermodynamic limit of the first-order phase transition in the Kuramoto model
In the Kuramoto model, a uniform distribution of the natural frequencies
leads to a first-order (i.e., discontinuous) phase transition from incoherence
to synchronization, at the critical coupling parameter . We obtain the
asymptotic dependence of the order parameter above criticality: . For a finite population, we demonstrate that the population
size may be included into a self-consistency equation relating and
in the synchronized state. We analyze the convergence to the thermodynamic
limit of two alternative schemes to set the natural frequencies. Other
frequency distributions different from the uniform one are also considered.Comment: 6 page
Multiobjective synchronization of coupled systems
Copyright @ 2011 American Institute of PhysicsSynchronization of coupled chaotic systems has been a subject of great interest and importance, in theory but also various fields of application, such as secure communication and neuroscience. Recently, based on stability theory, synchronization of coupled chaotic systems by designing appropriate coupling has been widely investigated. However, almost all the available results have been focusing on ensuring the synchronization of coupled chaotic systems with as small coupling strengths as possible. In this contribution, we study multiobjective synchronization of coupled chaotic systems by considering two objectives in parallel, i. e., minimizing optimization of coupling strength and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach. The constraints on the coupling form are also investigated by formulating the problem into a multiobjective constraint problem. We find that the proposed evolutionary method can outperform conventional adaptive strategy in several respects. The results presented in this paper can be extended into nonlinear time-series analysis, synchronization of complex networks and have various applications
Detection of synchronization from univariate data using wavelet transform
A method is proposed for detecting from univariate data the presence of
synchronization of a self-sustained oscillator by external driving with varying
frequency. The method is based on the analysis of difference between the
oscillator instantaneous phases calculated using continuous wavelet transform
at time moments shifted by a certain constant value relative to each other. We
apply our method to a driven asymmetric van der Pol oscillator, experimental
data from a driven electronic oscillator with delayed feedback and human
heartbeat time series. In the latest case, the analysis of the heart rate
variability data reveals synchronous regimes between the respiration and slow
oscillations in blood pressure.Comment: 10 pages, 9 figure
Anti-phase synchronization of phase-reduced oscillators using open-loop control
In this letter, we present an elegant method to build and maintain an
anti-phase configuration of two nonlinear oscillators with different natural
frequencies and dynamics described by the sinusoidal phase-reduced model. The
anti-phase synchronization is achieved using a common input that couples the
oscillators and consists of a sequence of square pulses of appropriate
amplitude and duration. This example provides a proof of principle that
open-loop control can be used to create desired synchronization patterns for
nonlinear oscillators, when feedback is expensive or impossible to obtain
Revisiting the models of vibration screening process
This talk presents two approaches for modeling of the vibration screening process. The first approach is analytical. It models the screening process as a diffusion of undersize fraction taking into account the special term for vibration separation (the Brazil nut effect). The talk provides a solution of the corresponding partial differential equation. The solution in turn allows estimation of the screening performance dependence on both deterministic and stochastic factors as well as evaluation of the factors dominance conditions. The talk presents simple evaluation formulae for the screening process performance. The second approach is based on a simulation model. The model deals with monolayer dynamics. Embodying traditional concepts of vibration transportation, the approach introduces some novel techniques of evaluation of the effect of the granular particles shape. Taking into account the particle shape factor may significantly improve the modeling precision for nonspherical particles
Rare events – rare attractors; formalization and examples
Analogy between attractors in nonlinear dynamics, called “rare attractors” by M.V. Zakrzhevsky and his colleagues [1] and emergencies, such as natural and technogenic catastrophes as well as downfalls caused by risky economic policies and strategies has been discussed. Examples of rare but technically significant attractors in nonlinear dynamics have been give
Experimental Study of the Effect of External Signal on Microwave Oscillations in a Nonrelativistic Electron Beam with Virtual Cathode
The effect of an external harmonic signal on the characteristics of microwave
generation in a nonrelativistic electron beam with virtual cathode (VC) formed
in a static retarding electric field (low-voltage vircator system) has been
experimentally studied. A significant increase in the vircator generation power
is observed when the frequency of the external signal is close to the frequency
of VC oscillations. At large detunings, a broadband chaotic generation is
observed.Comment: 3 pages, 2 figure
Controlled Synchronization of One Class of Nonlinear Systems under Information Constraints
Output feedback controlled synchronization problems for a class of nonlinear
unstable systems under information constraints imposed by limited capacity of
the communication channel are analyzed. A binary time-varying coder-decoder
scheme is described and a theoretical analysis for multi-dimensional
master-slave systems represented in Lurie form (linear part plus nonlinearity
depending only on measurable outputs) is provided. An output feedback control
law is proposed based on the Passification Theorem. It is shown that the
synchronization error exponentially tends to zero for sufficiantly high
transmission rate (channel capacity). The results obtained for synchronization
problem can be extended to tracking problems in a straightforward manner, if
the reference signal is described by an {external} ({exogenious}) state space
model. The results are applied to controlled synchronization of two chaotic
Chua systems via a communication channel with limited capacity.Comment: 8 pages, 2 figure
- …
