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In this paper, multiobjective synchronization of chaotic systems is investigated by especially

simultaneously minimizing optimization of control cost and convergence speed. The coupling form

and coupling strength are optimized by an improved multiobjective evolutionary approach that

includes a hybrid chromosome representation. The hybrid encoding scheme combines binary

representation with real number representation. The constraints on the coupling form are also

considered by converting the multiobjective synchronization into a multiobjective constraint

problem. In addition, the performances of the adaptive learning method and non-dominated sorting

genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are

analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed

chaotic neural networks. VC 2011 American Institute of Physics. [doi:10.1063/1.3595701]

Synchronization of coupled chaotic systems has been a

subject of great interest and importance, in theory but

also various fields of application, such as secure commu-

nication and neuroscience. Recently, based on stability

theory, synchronization of coupled chaotic systems by

designing appropriate coupling has been widely investi-

gated. However, almost all the available results have

been focusing on ensuring the synchronization of coupled

chaotic systems with as small coupling strengths as possi-

ble. In this contribution, we study multiobjective syn-

chronization of coupled chaotic systems by considering

two objectives in parallel, i. e., minimizing optimization

of coupling strength and convergence speed. The cou-

pling form and coupling strength are optimized by an

improved multiobjective evolutionary approach. The

constraints on the coupling form are also investigated by

formulating the problem into a multiobjective constraint

problem. We find that the proposed evolutionary method

can outperform conventional adaptive strategy in several

respects. The results presented in this paper can be

extended into nonlinear time-series analysis, synchroniza-

tion of complex networks and have various applications.

I. INTRODUCTION

Synchronization is widely observed in many fields such

as chaotic systems,1–6 neural systems,7,8 and complex net-

works.9–12 In coupled chaotic oscillators, it is well-known

that stability of the synchronized solution of coupled dynam-

ical systems depends on the strength of the coupling (interac-

tion or connection).13,14 One of the most intuitive approach

dealing with synchronization of coupled chaotic systems is

to use adaptive evolving coupling, which is based on feed-

back information and observed in many real-world net-

works.15–20 Although the importance of synchronization has

been widely recognized, almost all available results have

been focusing on ensuring the synchronization of coupled

chaotic systems with as small coupling strengths as possible.

In reality, however, the choice of coupling strengths actually

affects the convergence rate and the coupling strengths

which can be used to measure the synchronization perform-

ance or synchronization cost. To be more specific, in the pro-

cess of designing coupling strengths, it is often essential that

synchronization of chaotic systems is achieved with a con-

vergence rate as quick as possible, while the control cost

should be as small as possible. Therefore, it is meaningful to

investigate the issue of synchronization of chaotic systems

when simultaneously optimizing two conflicting objectives,

i. e., cost of coupling strengths and convergence rate at the

same time. In this paper, this kind of synchronization is

called multiobjective synchronization, which can be regarded

as a typical multiobjective optimization problem. A natural
question arises: do there exist other coupling strengths
which outperform adaptive strategies in terms of both con-
vergence speed and control cost? Unfortunately, a literature
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search has revealed that such an issue has not yet been

addressed, and the main reason lies in how to properly define

objective functions and how to solve this problem, despite its

importance in both theoretical and real-world applications. It

is, therefore, the first motivation of this paper to address such

a gap by making one of the first attempts to deal with multiob-

jective synchronization problem for a class of chaotic systems.

The limitations of control under constraints have been

investigated in the control theory literature, see Refs. 21–23

and the references therein. For example, in Ref. 22, a class of

controlled synchronization systems under information con-

straints imposed by limited information capacity of the cou-

pling channel is analyzed. In practical situations, some

dimensions in coupled systems should not be controlled due to

a reduction of control cost or implementation constraints. In

other words, it is essential to synchronize chaotic systems by

inputting feedback coupling strengths locally on a small frac-

tion of dimensions and exploiting the coupling effects to

achieve synchronization. This type of control technique is

called pinning control, which is widely used in many chaotic

synchronization and network control problems.24,25 In Ref. 26,

it is shown that master-slave synchronization of Lü systems can

be ensured by only inputting one controller, which efficiently

reduces the cost of control implementation. Up to now, the syn-

chronization problem for chaotic systems with automatically

selecting controlling dimensions has not been adequately

addressed, which is another incentive for this research.

As a multiobjective optimization problem, one of the

most popular ways to solve the multiobjective synchroniza-

tion problem is to construct a single aggregate objective

function.27 An easy and well-known combination is the

weighted linear sum of the objectives. One has to specify

scalar weights for each objective to be optimized a priori,
and then to combine them into a single function that can be

solved by any single-objective optimizer. Thus, the solution

obtained in such a way will largely depend on the values

(more precisely, the relative values) of the weights assigned. It

should also be noted that the weighted sum method is essen-

tially subjective, in that a decision maker needs to supply the

weights. This approach has another limitation that only solu-

tions located on the convex part of the Pareto front (PF) can be

detected, i.e., one cannot identify all non-dominated solutions.

Evolutionary algorithms are a class of stochastic search

heuristics that attempts to mimic biological processes of evolu-

tion, incorporating concepts of selection, reproduction, and

mutation.27,28 Evolutionary algorithms have been widely used

in synchronization of complex networks,10 PID control,29

dimensionality reduction,30 and designing neural networks,31

etc. Evolutionary algorithms are very popular approaches in

multiobjective optimization. Nowadays, most evolutionary

optimizers utilize Pareto-based ranking schemes. Genetic algo-

rithms, such as the non-dominated sorting genetic algorithm-II

(NSGA-II)32 and strength Pareto evolutionary approach-2

(SPEA-2),33 have become standard approaches. An objective

way of solving multiobjective problems requires a Pareto-com-

pliant ranking method, favoring non-dominated solutions, as

seen in current multiobjective evolutionary approaches such as

NSGA-II and SPEA-2. Specially, in NSGA-II, the computa-

tional complexity is reduced and the elitism approach is

adopted. In addition, no weight is required and thus no a priori
information on the problem is needed. However, in tackling

the problem of multiobjective synchronization of chaotic sys-

tems, the real coded NSGA-II utilizing the simulated binary

crossover (SBX) operator and polynomial mutation will lead to

a slow convergence speed of approximating true Pareto front,

since the decision variables in this multiobjective synchroniza-

tion problem lie in both a discrete space and a continuous

space, which contributes the third motivation of our research.

Motivated by the above discussion, a modified non-domi-

nated sorting genetic algorithm-II (MNSGA-II) is proposed by

a hybrid encoding scheme first in this paper. The problem of

multiobjective synchronization of chaotic systems by optimiz-

ing both convergence speed and control cost is investigated in

this paper. Multiobjective synchronization with constraints is

also analyzed. It was shown from the experiments in Sec. IV C

that the MNSGA-II outperformed the well-known NSGA-II in

terms of convergence speed and distribution of the solutions. It

is also verified that the solutions obtained by MNSGA-II domi-

nated the solutions obtained by adaptive coupling.

The main contributions of this paper will be as follows:

(1) The problem of multiobjective synchronization of cha-

otic systems in terms of control cost and convergence

speed is considered for the first time and solved by an

MNSGA-II algorithm.

(2) In dealing with the problem of multiobjective synchroniza-

tion of chaotic systems, not only the coupling strength, but

also the coupling form is taken into consideration, which

is converted into a constraint multiobjective problem.

(3) The MNSGA-II algorithm has a faster convergence speed

to approach Pareto front than the NSGA-II algorithm does.

(4) The solutions obtained by MNSGA-II can dominate the

solutions obtained by the adaptive feedback learning

method in the simulation examples, and MNSGA-II can

also provide more solutions for synchronization.

The remainder of this paper is organized as follows. In

Sec. II, some preliminaries of the multiobjective synchroni-

zation problem are briefly outlined. In Sec. III, the encoding

scheme of MNSGA-II is presented. In Sec. IV, the feasibility

and contributions of the proposed approach are analyzed.

Concluding remarks are given in Sec. V.

II. MULTIOBJECTIVE SYNCHRONIZATION OF
CHAOTIC SYSTEMS

A. Preliminaries

Throughout this paper, dDð�Þ denotes the characteristic

function of the finite set D, i.e., dDðiÞ ¼ 1 if i 2 D; other-

wise, dDðiÞ ¼ 0.

In this paper, to illustrate the multiobjective synchroni-

zation of chaotic systems, the following systems are consid-

ered for the sender and receiver (or master and slave),

_xðtÞ ¼ f ðxðtÞ; xðt� sðtÞÞÞ;
_yðtÞ ¼ f ðyðtÞ; yðt� sðtÞÞÞ þ a½gðxðtÞÞ � gðyðtÞÞ�; (1)

where x(t)¼ [x1, …, xn] is the n-dimensional state of the

sender system and y(t)¼ [y1, …, yn] is the n-dimensional

025114-2 Tang et al. Chaos 21, 025114 (2011)



state of the receiver system; s(t) is a time-varying delay for

delayed chaotic systems; f(�) is the dynamics of an uncoupled

system and supposed to be chaotic, f : Rn ! Rn;

a ¼ diagðc1;…; cnÞ 2 Rn�n is a diagonal matrix represent-

ing the coupling strength; g(�) is an output function,

g : Rn ! Rn. The output function g(x(t)) can be rewritten as

g(x(t))¼Cx(t), where C ¼ diagðdDð1Þ; dDð2Þ;…; dDðnÞÞ is a

diagonal inner coupling. In many practical situations, com-

munication between the connected systems involves only a

subset of the dynamical state variables of the systems and

the communication channel might suffer from constraints. In

this paper, the selection of C is automatically implemented

by a genetic algorithm. Three cases considered are as

follows:

(1) Selection of C without any constraint;

(2) Only one dimension is connected
Pn

i dDðiÞ ¼ 1;
�

i ¼ 1; 2;…; nÞ; and

(3) One dimension cannot be controlled ðdDðiÞ 6¼ 1;
i ¼ 1; 2;…; nÞ.

Therefore, the second part of Eq. (1) can be rewritten as,

_yðtÞ ¼ f ðyðtÞ; yðt� sðtÞÞÞ þ K½xðtÞ � yðtÞ�; (2)

where K¼diagðdDð1Þc1;…;dDðnÞcnÞ, in which ci (i¼ 1,

…, n) is the coupling strength.

For the adaptive coupling, in this paper, we consider the

following adaptive strategy:

_yðtÞ ¼ f ðyðtÞ; yðt� sðtÞÞÞ þ K½xðtÞ � yðtÞ�; (3)

where K ¼ diagðdDð1Þc1;…; dDðnÞcnÞ is updated according

to the following laws:

_ci ¼ lðxiðtÞ � yiðtÞÞ2; dDðiÞ ¼ 1;
ci ¼ 0; dDðiÞ ¼ 0;

�
(4)

where l> 0 is an arbitrary constant.

In order to optimize the control cost and the conver-

gence speed, we introduce the average synchronization error

E and the average control cost C as follows:

E ¼ 1

t2 � t1

ðt2

t1

k xðtÞ � yðtÞ k dt; (5)

C ¼ 1

t2 � t1

ðt2

t1

k K k dt; for Eq: ð2Þ;

C ¼ 1

t2 � t1

ðt2

t1

k K k dt; for Eq: ð3Þ:

8>><
>>:

(6)

From the above two quantities, it is observed that the smaller

the E and C, the better the control performance. In this paper,

our goal is to obtain solutions which make E and C as small

as possible at the same time.

In the field of optimal control, one can formulate the fol-

lowing equation:

R ¼
ð1

0

ðeTðtÞP1eðtÞ þ uTðtÞP2uðtÞÞ;

where e(t)¼ x(t)� y(t), uðtÞ ¼ KðxðtÞ � yðtÞÞ, P1 and P2 are

two positive matrices. Here, R is a combination of (5) and

(6). First, in order to minimize R, P1 and P2 should be pro-

vided in advance. As discussed in the Sec. I, the solution

obtained in such a way will largely depend on the values of

the weights assigned. Second, the system is a nonlinear one

and it is usually impossible to obtain an analytic solution.

Finally, even if a solution can be obtained, it is very difficult

to avoid unavoidable conservativeness due to the existing

mathematical assumptions.

B. Multiobjective optimization

At present, many practical applications involve complex

optimization problems with various objectives that are often

noncommensurable and conflicting in nature. The variety of

objectives, together with the presence of numerous con-

straints, leads to the difficulty of tackling such problems, if

not infeasible to solve without the support of powerful and

efficient optimization algorithms. Here, without any loss of

generality, a minimization problem with a decision space X
is considered, since E and C should be minimized to a value

as small as possible. For the minimization problem, we

intend to solve for a variable set V that optimizes the follow-

ing objective:

min
V2X

FðVÞ;V 2 Rn; (7)

where V¼fv1, v2, …, vng is a vector with a set of decision

variables and F¼ff1, f2, …, fmg is the objective vector with

m objectives to be minimized.

The following concepts of Pareto dominance and Pareto

optimality are fundamental in multiobjective optimization,

with Pareto dominance forming the basis of solution quality.

Definition 1 (Pareto Dominance): Given the objective

vectors Y1 2 Rm and Y2 2 Rm, then Y1 dominates Y2,

denoted as Y1 � Y2, iff y1i � y2i, Vi 2 f1,2, …, mg, and

y1i< y2i, Ai 2 f1,2, …, mg.
Definition 2 (Optimal Pareto Front): The optimal Pareto

front (PF) denoted by F� is the set of individuals,

F� ¼ fF�j jF�j � F i; 8F i 2 Fg: (8)

Different from single objective optimization, the solu-

tion to the multiobjective optimization problem exists in the

form of alternate tradeoffs known as optimal Pareto optimal

set. The different dominance relationship is illustrated in

Fig. 1, where the solutions denoted by red circles form the

Pareto front and dominate the solutions represented by blue

square circles. It should be noted that each objective compo-

nent of any nondominated solution in the Pareto optimal set

can only be improved by degrading at least one of its other

objective components.32

In this paper, evolutions of both the inner coupling C
and the coupling strengths a are considered. This problem is

distinguished from previous work as it is regarded as a multi-

objective problem where the two objectives (e.g., Eqs. (5)

and (6)] of control cost C and synchronization error E are

conflicting in nature. In order to ensure synchronization and

make the designed coupling strength not very large, the con-

straints are placed on E and C. As discussed in Sec. II A, the
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first case of the optimization problem for the multiobjective

synchronization of chaotic systems can be given as:

f1 ¼ minfCg;
f2 ¼ minfEg;

s:t: E < ne;C < nc; (9)

where ne and nc are constant. The upper bounds of ne and nc

might be determined by an adaptive coupling method, which

is similar to the reference point based method in the multiob-

jective problem. On the other hand, as pointed out in Sec. II A,

communication between the connected systems involves a

small fraction of the dynamical state variables of the systems

and the communication channel might suffer from con-

straints. Therefore, communication constraints are also con-

sidered in this paper. The second problem is that only one

dimension in the chaotic system is coupled. The problem can

be formulated as follows:

f1 ¼ minfCg;
f2 ¼ minfEg;

s:t: E < ne;C < nc;
Xn

i

dDðiÞ ¼ 1: (10)

The third problem is that one dimension should not be

coupled. The problem can be written as:

f1 ¼ minfCg;
f2 ¼ minfEg;

s:t: E < ne;C < nc; dDðiÞ 6¼ 1: (11)

The second and the third problems can also be regarded

as pinning control, which means only a fraction of dimen-

sions is controlled. Note that there exist 2n� 1 possibilities

of control dimensions. When n exceeds 20, there exist at

least 1 048 575 choices. It is hard to tackle the problem of

selection schemes using the enumeration method. On the

other hand, there exists no literature to solve the problem of

selecting control dimensions efficiently. In this paper, the

selection of controlling dimensions is automatically selected

by evolutionary algorithms.

III. A MODIFIED NSGA-II

Conventional approaches to multiobjective optimization

typically transform the original problem into a single optimi-

zation problem and use point-by-point algorithms to itera-

tively find a better solution. Limitations of such approaches

are that the multiobjective problem should be well-behaved,

i.e., differentiability or satisfying the Kuhn-Tucker conditions,

the assigned weights of various objectives and the generation

of only one solution for each simulation run. Recently, meta-

heuristical methods that are inspired by biological or multi-

agent phenomena such as evolutionary algorithms and particle

swarm optimization have been gaining increasing attention as

a much more flexible and effective candidate to dealing with

complex optimization problems. Among these meta-heuris-

tics, multiobjective evolutionary algorithm is a stochastic

search methodology to solve multiobjective problems involv-

ing multiple noncommensurable and competing criteria.

Through mimicking the Darwin-Wallace principle of sur-

vival-of-the-fittest, multiobjective evolutionary algorithms

have the distinct advantage of being able to sample multiple

solutions simultaneously. With such a feature, multiobjective

evolutionary algorithms have the capability of dealing with

the multiobjective problem as well as finding nondominated

sets in a single run.

Owing to the popularity and efficiency of NSGA-II, it is

used to solve the multiobjective synchronization problem of

chaotic systems. NSGA-II includes diversity preservation,

nondominated sorting approach, and elitism method. The

function of the elitism method is that the best solution of the

population in each step is reserved and used for mutation and

crossover for the next step. As a real-coded NSGA-II algo-

rithm is able to find a better spread of solutions than a bi-

nary-coded NSGA-II, while a real-coded NSGA-II provides

similar results to appropriate true optimal PF with a binary-

coded NSGA-II,32 the real-coded NSGA-II is used in this pa-

per. The real-coded NSGA-II includes a simulated binary

crossover and polynomial mutation operators. The SBX op-

erator simulates the working principle of the single-point

crossover operator on binary strings. It has been verified that

SBX respects the interval schemata processing, in the sense

that common interval schemata between parents are pre-

served in children. It should be also mentioned that more

details of jargons such as elitism approach and SBX in the

evolutionary algorithm can be found in Refs. 27, 28, and 32.

As problems studied in this paper are under constraints, the

following constrained dominance is employed to tackle the

constrained problem:32

A solution i is said to constrained-dominate a solution j,
if any of the following conditions is true:

(1) Solution i is feasible but solution j is not.

(2) Solutions i and j are both infeasible, but solution i has a

smaller overall constraint violation.

(3) Solutions i and j are feasible and solution i dominates so-

lution j.

FIG. 1. (Color online) Illustration of the optimal Pareto front and the rela-

tionship between dominated and nondominated solutions.
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The effect of using this constrained-domination princi-

ple is that any feasible solution has a better nondomination

rank than any infeasible solution. All feasible solutions are

ranked according to their nondomination level based on the

objective function values. Among two infeasible solutions,

the solution with a smaller constraint violation has a better

rank.

A detailed implementation of MNSGA-II is introduced

as follows. MNSGA-II is a kind of genetic algorithm (GA),

which is a search heuristic that simulates the process of natu-

ral evolution. This heuristic is routinely used to generate use-

ful solutions to optimization and search problems. GAs

generate solutions to optimization problems using techniques

inspired by natural evolution, such as mutation, selection,

and crossover. In a GA, a population of strings (called chro-

mosomes), which encode candidate solutions (called individ-

uals) to an optimization problem, evolves toward better

solutions. Each dimension in chromosomes is called a gene.

The first step of the MNSGA-II is to encode possible control

solutions into chromosomes. A chromosome represents a

feasible solution. To handle the synchronization problem

addressed, a feasible solution should be able to determine the

assignment of control dimension and control gain. In this

research, each chromosome is a sequence of genes whose

length is equal to two times of the chaotic dimension n. The

encoding scheme is shown in Fig. 2. As seen in Fig. 2, the

encoding scheme includes two parts. Each gene in part A

identifies the activation of dimension i and the value of each

gene in part B indicates control gain in each dimension i of

chaotic systems. For original real-coded NSGA-II, part A is

a continuous space and is used to control the activation of

dimension i, that is, the controller in dimension i is activated

according to the value of ai. Part B is the corresponding con-

trol gain of Part A. For real-coded NSGA-II, if ai> 0.5,

dDðiÞ ¼ 1, i.e., the dimension i is controlled by the control

gain ci.

Although NSGA-II can deliver good performance and

high efficiency in dealing with multiobjective optimization,

NSGA-II might not be suitable to solve the multiobjective

synchronization of chaotic systems, since both discrete and

continuous decision spaces are included. If part A of each

chromosome is evolved using SBX and polynomial muta-

tion, the switching between different selections of dDðiÞ is

very slow, which might lead to a slow convergence speed.

Therefore, an MNSGA-II is proposed here. Different from

the original NSGA-II, part A of each chromosome is a dis-

crete coding scheme. A binary encoding scheme is utilized

here. If ai¼ 1, the dimension i is controlled and the control

gain ci is used to control. If ai¼ 0, the dimension i is not con-

trolled. Part B in MNSGA-II is the same as the original

NSGA-II. The chromosomes in the population will benefit

from this mechanism and have the ability of fast conver-

gence speed.

Since both discrete and continuous spaces are consid-

ered in MNSGA-II, a hybrid crossover and mutation scheme

is adopted in this paper. For part B of the encoding scheme,

the SBX and polynomial mutation are employed, which are

the same as NSGA-II. For part A of the encoding scheme, to

adapt the proposed presentation, a crossover operator is

adopted based on the uniform crossover and mutation,28

which is implemented by using the following five steps:

(1) Randomize a bit string with the same length as the

chromosomes;

(2) Find the gene positions where the value is 1 (or 0) in the

bit string;

(3) Fill in the same positions in child 1 (or child 2) by copy-

ing the genes from the gene positions of parent 1 (or par-

ent 2) found in step 2;

(4) Fill in the remaining positions in child 1 (or child 2) by

copying the genes from the other gene positions of par-

ent 2 (or parent 1);

(5) Check if the generated child chromosome is an invalid

solution. If so, go to step 1; otherwise output the gener-

ated chromosomes.

In this study, a mutation operator is used based on the

uniform mutation,8 which is implemented according to the

steps below:

(1) Randomly generate a positive integer r [r [ (1,n)].

(2) Randomly select r genes as mutation genes in the origi-

nal chromosome;

(3) For each mutation genes selected, randomly change its

value;

(4) Check whether the chromosome generated in step 3 is an

invalid solution. If so, go to step 2; otherwise output the

generated chromosome.

Note that if the control dimension can be fixed a prioi,
part A of each chromosome can be removed and part B of

each chromosome remains. Only the control gains are

designed to synchronize the chaotic systems.

IV. NUMERICAL EXAMPLES

This section shows that the MNSGA-II algorithm not

only outperforms the conventional adaptive coupling

method, but also delivers better performance than the origi-

nal NSGA-II algorithm. Three different paradigms, i. e.,

three-order Rössler system,34 delayed chaotic neural net-

works35 (DCNN), and hyperchaotic Rössler system36 are

used to carry out numerical examples. Three kinds of prob-

lems introduced in Sec. II are investigated in this research.

A. Chaotic systems

First, three chaotic systems including Rössler system,

delayed chaotic neural networks, and hyperchaotic Rössler

system are introduced. The Rössler system is given by the

following differential equations:FIG. 2. (Color online) Encoding scheme of multiobjective synchronization.
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_x1 ¼ �x2 � x3;
_x2 ¼ x1 þ ax2;
_x3 ¼ bþ x3ðx1 � cÞ;

8<
: (12)

where a, b, and c are constants. In this study, a¼ 0.2,

b¼ 0.2, and c¼ 10 are used. The Rössler system then dis-

plays chaotic behavior. Next, the following delayed chaotic

neural network is considered here:

_x1 ¼ �x1 þ 1:8 tanhðx1Þ � 0:15 tanhðx2Þ
þ1:7 tanhðx1ðt� sðtÞÞÞ
�0:12 tanhðx2ðt� sðtÞÞÞ;

_x2 ¼ �x2 � 5:2 tanhðx1Þ þ 3:5 tanhðx2Þ
�0:26 tanhðx1ðt� sðtÞÞÞ
�2:5 tanhðx2ðt� sðtÞÞÞ;

8>>>>>><
>>>>>>:

(13)

where sðtÞ ¼ et

etþ1
is a time-varying delay. Finally, a hyper-

chaotic Rössler system is studied,

_x1 ¼ �x2 � x3;
_x2 ¼ x1 þ ax2 þ x4;
_x3 ¼ bþ x1x3;
_x4 ¼ �cx3 þ dx4;

8>><
>>:

(14)

where a, b, c, and d are constants. Here, a¼ 0.25, b¼ 3,

c¼ 0.5, and d¼ 0.05 are used here.

The initial values of sender (IVS) and initial values of

receiver (IVR) of three chaotic systems are listed in Table I.

Note that only one set of IVS and IVR is provided in this pa-

per. However, different IVS and IVR will result in the simi-

lar results. In this paper, due to the sake of simplicity, the

representative results are presented.

B. Comparison of adaptive coupling and MNSGA-II

Here, the well-known adaptive strategy and MNSGA-II

are compared with or without restrictions on C.

1. Comparison of adaptive coupling and MNSGA-II
with unconstrained C

Three examples with constraints on E and C are pro-

vided and the restriction on C is not considered in this sub-

section. In order to compare the well-known adaptive

strategy with our MNSGA-II, we enumerate all the cases of

C for couplings and use the adaptive schemes to update the

coupling strengths. Details of C are shown in Tables II–IV.

The Runge-Kutta method with a stepsize 0.01 is used to

simulate all the models. If there is no further statement, t1¼ 0

and t2¼ 20 are adopted. The initial values of adaptive

strength are 0 for all the dimensions of different chaotic sys-

tems. The constant l is taken as l¼ 10 in the adaptive strat-

egy. Note that a large l will result in a large E with a small C
and vice visa. We have tested different l and similar results

can be obtained. Here, the representative results are provided.

If without any further statement, for MNSGA-II, the popula-

tion size is 100 and the generation number is T¼ 250. For

SBX and polynomial mutation, the crossover probability of

pc¼ 0.9 and a mutation probability of pm¼ 0.1 are used.32

We use distribution indexes for crossover and mutation oper-

ators as gc¼ 20 and gm¼ 20, (Ref. 27), respectively. The

search space of coupling strength in all the dimensions is set

[0, 50]. The population obtained at the end of T generations

(the population after elite-preserving operator is applied) is

used to calculate a couple of performance metrics (E and C).

In order to demonstrate the effectiveness of the

MNSGA-II and the adaptive strategy, we show typical

TABLE I. The initial values of sender (IVS) and initial values of receiver

(IVR).

System IVS IVR

Rössler system 10, 10, 10 0.3, 0.5, 0.7

DCNNs 1, 1 0.3, 0.5

Hyperchaotic system �10, �6, 0, 10 �10.5, �6.5, 0.5, 10.5

TABLE II. Synchronization of the Rössler system with different C using

adaptive coupling and MNSGA-II.

C Symbols for AC Symbols for MNGA-II

f1,0,0g A1

f0,1,0g A2 Control one dimension

f0,0,1g A3

f1,1,0g B1

f1,0,1g B2 Control two dimensions

f0,1,1g B3

f1,1,1g C1 Control three dimensions

TABLE III. Synchronization of DCNNs with different C using adaptive

coupling and MNSGA-II.

C Symbols for AC Symbols for MNGA-II

f1,0g A1 Case I

f0,1g A2 Case II

f1,1g B1 Case III

TABLE IV. Synchronization of the hyperchaotic Rössler system with dif-

ferent C using adaptive coupling and MNSGA-II.

C Symbols for AC Symbols for MNGA-II

f1,0,0,0g A1

f0,1,0,0g A2 Control one dimension

f0,0,1,0g A3

f0,0,0,1g A4

f1,1,0,0g B1

f1,0,1,0g B2

f1,0,0,1g B3 Control two dimensions

f0,1,1,0g B4

f0,1,0,1g B5

f0,0,1,1g B6

f1,1,1,0g C1

f1,1,0,1g C2 Control three dimensions

f1,0,1,1g C3

f0,1,1,1g C4

f1,1,1,1g D1 Control four dimensions
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simulation results of both MNSGA-II and adaptive strategies

for the three chaotic systems. For the sake of simplicity and

reality, the coupling strength should not be too large and the

synchronization error should be small enough to ensure syn-

chronization. We set constraints of nE¼ 1 and nC¼ 50 for

the chaotic systems. Once the solutions obtained by

MNSGA-II exceed the boundary, the solutions are regarded

as infeasible solutions. One might wonder why such parame-

ters are set. If we relax the bounds of nE and nC, more infea-

sible (or impractical) solutions will be obtained (the

coupling strengths are too large or synchronization of the

chaotic systems cannot be guaranteed). One can also place

more restrictions on nE and nC; however, in order to show

the diversity of solutions, we do not make nE and nC too

small. In Figs. 3 and 4, the synchronization error is calcu-

lated as log10 jjx(t)�y(t)jj.
Figures 3(a), 3(c), and 3(e) show the solutions obtained

after 250 generations with MNSGA-II and the solutions

obtained by the adaptive strategy. First, it can be observed

from Figs. 3(a), 3(c), and 3(e) that the solutions obtained by

MNSGA-II dominate all the solutions obtained by the adaptive

strategy. For the Rössler system, we can see that only A1, A2,

and B1 obtained by the adaptive scheme are plotted in Fig.

3(a), which indicates that they are feasible solutions. It is also

visible that the chaotic systems coupled (controlled) by one

dimension will lead to a small control cost but a slow conver-

gence rate. Controlling three dimensions of chaotic systems

will result in a fast convergence speed but the control cost is

usually very large. Controlling two dimensions of chaotic sys-

tems is an intermediate way among the three schemes. From

Fig. 3(b), the results of synchronization errors confirm the

above observations that a number of solutions obtained by

MNSGA-II can achieve faster convergence rate for synchroni-

zation than by the adaptive strategy. The solutions obtained by

controlling three dimensions with MNSGA-II can achieve the

fastest convergence speed among the three coupling schemes.

FIG. 3. (Color online) Synchronization

errors of chaotic systems (errors plotted

in log10) and solutions (Computing f1
and f2) obtained by adaptive strategy and

MNSGA-II. In (b), (d), and (f), black

lines are the errors by adaptive strategy;

other color lines are the corresponding

synchronization errors using the same

solutions by MNSGA-II. (a) Solutions

obtained by adaptive strategy and

MNSGA-II for synchronization of the

Rössler system; (b) synchronization

errors of the Rössler system using adapt-

ive strategy and MNSGA-II; (c) solu-

tions obtained by adaptive strategy and

MNSGA-II for synchronization of

DCNN; (d) synchronization errors of

DCNN using adaptive strategy and

MNSGA-II (black lines are the errors by

adaptive strategy); (e) solutions obtained

by adaptive strategy and MNSGA-II for

synchronization of the hyperchaotic

Rössler system; (f) synchronization

errors of the hyperchaotic Rössler sys-

tem using adaptive strategy and

MNSGA-II (black lines are the errors by

adaptive strategy).
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For synchronization of DCNN, the results of solutions

and synchronization errors are shown in Figs. 3(c) and 3(d).

It can be observed that the solutions A1 and B1 by the adapt-

ive scheme dominate the solution A2. By MNSGA-II, we

find that the solutions when C¼f0, 1g are not shown in Fig.

3(c), which indicates that controlling the first dimension of

DCNN is more efficient than controlling the second dimen-

sion. Such a phenomenon also confirms the results obtained

by adaptive coupling. It can also be found that controlling

two dimensions will lead to a faster convergence speed and a

larger coupling strength than controlling one dimension.

From Fig. 3(d), it was also found that a number of solutions

of MNSGA-II can achieve faster convergence rate for syn-

chronization than those of the adaptive strategy.

For synchronization of the hyperchaotic Rössler system,

the results of solutions and synchronization errors are illus-

trated in Figs. 3(e) and 3(f). It is seen from Figs. 3(e) and

3(f) that the results of controlling one dimension are not

shown, which mean that the results of controlling one dimen-

sion are infeasible solutions or dominated by other solutions.

It was found that as more dimensions are controlled, the

smaller (quicker) the synchronization error E and the larger

the control cost C become.

To summarize, the advantages of MNSGA-II over the

adaptive scheme are listed as follows:

(1) Some solutions obtained by MNSGA-II dominate the

solutions obtained by the adaptive coupling, which

means that the convergence speed of the adaptive cou-

pling can be further improved with a smaller control

cost.

(2) MNSGA-II is able to provide much more solutions than

the conventional adaptive coupling method does. One

can select one of them, which is able to fit the circum-

stance implementation best.

(3) MNSGA-II has the ability of automatically finding effi-

cient coupling dimensions under implementation

constraints.

FIG. 4. (Color online) Synchronization

errors of chaotic systems (errors plotted

in log10) and solutions (Computing f1
and f2) obtained by adaptive strategy and

MNSGA-II with constrained C. In (b),

(d) and (f), black lines are the errors by

adaptive strategy; other color lines are

the corresponding synchronization errors

using the same solutions by MNSGA-II.

(a) Solutions obtained by adaptive strat-

egy and MNSGA-II for synchronization

of the Rössler system; (b) synchroniza-

tion errors of the Rössler system using

adaptive strategy and MNSGA-II; (c)

solutions obtained by adaptive strategy

and MNSGA-II for synchronization of

DCNN; (d) synchronization errors of

DCNN using adaptive strategy and

MNSGA-II (black lines are the errors by

adaptive strategy); (e) solutions obtained

by adaptive strategy and MNSGA-II for

synchronization of the hyperchaotic

Rössler system; (f) synchronization

errors of the hyperchaotic Rössler sys-

tem using adaptive strategy and

MNSGA-II (black lines are the errors by

adaptive strategy).
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2. Comparison of adaptive coupling and MNSGA-II
with constrained C

Now, synchronization of chaotic systems with con-

strained C is investigated. For the Rössler system and

DCNN, the second problem in Sec. II is studied, i.e., only

one dimension is coupled. For the hyperchaotic Rössler sys-

tem, the third problem in Sec. II is studied, i.e., only one

dimension is not coupled. Here, we assume that the second

dimension is not coupled. In order to compare the well-

known adaptive strategy with MNSGA-II, we enumerate all

the cases of C for coupling and employ the adaptive schemes

to update the coupling strengths. The symbols are listed in

Tables III–V.

The solutions obtained after 250 generations with

MNSGA-II and the adaptive strategy are shown in Figs. 4(a),

4(c), and 4(e). Similar with the results in Sec. IV B 1, we

find that the solutions obtained by MNSGA-II dominate the

solutions obtained by the adaptive approach. For the Rössler

system, it is shown from Fig. 4(a) that controlling the second

dimension is the most efficient coupling way to achieve syn-

chronization. The solutions obtained by the adaptive

approach are infeasible solutions and hence are not plotted in

Figs. 4(a) and (b). For DCNN, controlling the second dimen-

sion is more powerful than controlling the first dimension, as

seen from Figs. 4(c) and (d). One reason might explain this

phenomenon is that the second dimension x2 has larger cou-

pling with the first dimension x1 than the first dimension x1

does. For the hyperchaotic Rössler system, only two solu-

tions B3 and C3 obtained by the adaptive scheme are feasible.

However, B3 and C3 are also dominated by the solutions

obtained by MNSGA-II. From Figs. 4(b), 4(d), and 4(f), the

results indicate that a number of solutions obtained by

MNSGA-II have faster convergence speed to achieve syn-

chronization than the solutions obtained by the adaptive

strategy.

C. Comparison of NSGA-II and MNSGA-II

This subsection shows the advantages of MNSGA-II

over NSGA-II. The initial variables of both algorithms are

the same. Unlike in single-objective optimization, there are

two goals in a multiobjective optimization problem: (1) con-

vergence to the Pareto-optimal set and (2) maintenance of di-

versity in solutions of the Pareto-optimal set. These two

tasks cannot be measured adequately with one performance

metric. Four examples are given including synchronization

of the Rössler system with unconstrained C, synchronization

of the hyperchaotic Rössler system with unconstrained C,

synchronization of the Rössler system with constrained C,

and synchronization of the hyperchaotic Rössler system with

constrained C, which are investigated in Sec. IV B. The

details of simulation results are given as follows.

1. Synchronization of the Rössler system with
unconstrained C

The convergence process of the solutions obtained by

NSGA-II and MNSGA-II with the generation number T¼ 80

are shown in Fig. 5. It is revealed that MNSGA-II has the abil-

ity of appropriating Pareto front faster than NSGA-II. When

T¼ 20, some solutions generated by NSGA-II are dominated

by the solutions of MNSGA-II. Some solutions obtained by

MNSGA-II are discontinued and hence the diversity of the sol-

utions is not satisfied. When T¼ 80, a few solutions by NSGA-

II are still dominated by the solutions of MNSGA-II. The solu-

tions obtained by MNSGA-II are averagely dispersed when the

generation number T increases. From our observations, one can

see that although the diversity of the solutions obtained by both

algorithms is similar after 80 generations, the MNSGA-II has a

faster convergent speed compared with NSGA-II.

2. Synchronization of the hyperchaotic Rössler
system with unconstrained C

The convergence process obtained by NSGA-II and

MNSGA-II with the generation number T¼ 120 is illustrated

in Fig. 6. Similar with the results of synchronization of the

Rössler with unconstrained C, it is shown from Fig. 6 that

MNSGA-II is able to approach PF faster as with a NSGA-II

as well as with a better diversity. After 20 generations, a few

solutions generated by NSGA-II are dominated by the solu-

tions of MNSGA-II and the diversity of solutions of NSGA-II

TABLE V. Synchronization of the Rössler system with different C using

adaptive coupling and MNSGA-II.

C Symbols for AC Symbols for MNGA-II

f1,0,0g A1 Case I

f0,1,0g A2 Case II

f0,0,1g A3 Case III

FIG. 5. (Color online) Convergence

comparison of NSGA-II and MNSGA-II

for the Rössler system with unconstrained

C.
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is poorer than that of MNSGA-II. After 120 generations, it is

easily found that the convergence speed of MNSGA-II outper-

forms that of NSGA-II. After 120 generations, the solutions of

MNSGA-II are averagely distributed in space, while the solu-

tions of NSGA-II are a subset of the solutions of MSGA-II.

Nearly a half of the solutions are not discovered by NSGA-II.

3. Synchronization of the Rössler system with
constrained C

Fig. 7 shows the convergence process of the solutions

obtained by NSGA-II and MNSGA-II with the generation

number T¼ 120. It can be seen from Figs. 7(a) and 7(b) that

almost all the solutions obtained by NSGA-II are infeasible

solutions although 20 steps are run. However, MNSGA-II

has the ability of finding feasible solutions already after 20

steps only. Although the diversity of solutions obtained by

MNSGA-II can be further improved, MNSGA-II outper-

forms NSGA-II much more in finding PF. After 120 genera-

tions, the solutions obtained by NSGA-II do not appear in

the feasible space. However, the solutions generated by

MNSGA-II converge to the PF. Therefore, NSGA-II lacks

the ability of overcoming the constraints on C and MNSGA-

II has the capability of finding feasible solutions.

4. Synchronization of the hyperchaotic Rössler
system with constrained C

Fig. 8 depicts the convergent process of the solutions

obtained by NSGA-II and MNSGA-II with the generation

number T¼ 1000. From Fig. 8(a), all the solutions obtained

by NSGA-II are dominated by the solutions obtained by

MNSGA-II after 200 generations. NSGA-II has a much

slower convergence speed to approach PF than MNSGA-II

does. On the other hand, the solutions obtained by MNSGA-

II are averagely dispersed in the feasible space. From Fig.

8(d), it can be seen that the solutions obtained by NSGA-II

are a subset of those solutions obtained by NSGA-II. After

1000 generations, the solutions obtained by NSGA-II con-

verge to the PF, which is also discovered by MNSGA-II.

In summary, MNSGA-II has a faster convergence speed

of detecting PF than NSGA-II does, especially in dealing

with the problems of synchronization of chaotic systems with

constrained C. The solutions of MNSGA-II are also more

diverse than those of NSGA-II after certain generations.

D. Impact of the coupling strength on synchronization
errors

In this subsection, the impact of the coupling strength on

synchronization errors is studied for DCNN. From Figs. 3

and 4, it can be observed that the synchronization error for

DCNN exhibit oscillations. For explaining this phenomenon,

K1¼f26.3819, 23.6171g, K2¼f12.4238, 8.3339g,
K3¼f0.7708, 0.0751g, and C¼f1, 1g are chosen for syn-

chronization of DCNN. The value of Ki(i¼ 1,2,3) is obtained

by MNSGA-II. Only three representatives Ki(i¼ 1,2,3) are

used here for the sake of simplicity. The synchronization

errors are plotted (in log10 scale) in Fig. 9. It can be easily

seen from Fig. 9 that with increasing the coupling cost C, the

FIG. 6. (Color online) Convergence

comparison of NSGA-II and MNSGA-II

for the hyperchaotic Rössler system with

unconstrained C.

FIG. 7. (Color online) Convergence

comparison of NSGA-II and MNSGA-II

for the Rössler system with constrained

C.
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synchronization error has an increasing convergence speed.

In addition, we find that the larger the coupling cost C, the

more frequent or stronger peaks occur. From Fig. 9, one can

also see that when using K2 the frequency of peaks is the

same as when using K1. However, when using K1 a larger

amplitude of the peaks occurs than when using K2. On the

other hand, it can also be observed that the frequency of

peaks when using K2 is larger when using K3, also with a

larger amplitude of the peaks. These peaks=oscillations in

this paper are due to the interplay between coupling strength

and the individual dynamics. They do not only depend on the

properties of the coupling strength, but also on the intrinsic

properties of each individual dynamical system.

E. Time complexity of NSGA-II and MNSGA-II

The time complexity of NSGA-II and MNSGA-II is

O(MN2), where M is the objective number and N is the popu-

lation size.32 Actually, in real world application, the fitness

evaluations of f1 and f2 overwhelm the algorithm. For exam-

ple, when studying the problem of synchronization of the

Rössler system with constrained C, the time of fitness evalu-

ation occupies 90% of the total running time, and the time

for carrying out the other part of the algorithm only costs

10% of the total running time.

V. CONCLUSIONS

In the field of designing coupling schemes of chaotic

systems, one of the major challenges is to design optimal

coupling strength to ensure synchronization of chaotic sys-

tems. In this paper, the problem of multiobjective synchroni-

zation problem of chaotic systems is investigated, in which

both control cost of the coupling strength and convergence

speed of synchronization are taken into consideration for

optimization. In order to solve this multiobjective synchroni-

zation of chaotic systems with a fast convergence speed, an

MNSGA-II is proposed by using a hybrid encoding scheme,

which includes binary coding and real-coded coding

schemes. The selections of appropriate coupling dimensions

are also involved in the representations of MNSGA-II. Addi-

tionally, the comparisons of the adaptive updating method

and NSGA-II algorithm with MNSGA-II are investigated in

detail. The effectiveness of the MNSGA-II is examined by

several numerical simulations.

Our approach can be extended and improved in several

ways. On the one hand, the approach can be extended to study

synchronization of chaotic systems with state switching, dis-

tributed delay, stochastic disturbances, and output coupling.

One can utilize the proposed approach to obtain a better under-

standing of the interplay between the coupling dimensions and

coupling strengths of different kinds of chaotic systems. It is

also worth noting that the coupling strength is large; synchroni-

zation is dictated by the manner of driving the model with the

data, so the estimation metric is small. When the coupling

strength is too small, the data and the model do not synchron-

ize, and information is not passed precisely between the data

and the model.37 Therefore, how to properly design coupling

strength is essential to achieve synchronization in coupled cha-

otic systems and estimation of unknown parameters of chaotic

systems. Thus, an appropriate control gain can be designed

according to the proposed method for identification of

unknown parameters. On the other hand, since a number of

solutions are displayed before a decision maker, in real world

applications, the decision maker is not interested in the overall

Pareto optimal front since the final decision is a unique solu-

tion. A simple and efficient way to solve the problem is to

employ the recently developed reference point based tech-

nique,38 which might help to not only enhance the convergence

speed of multiobjective evolutionary algorithm, but also pro-

vide a satisfactory solution to the decision maker.

FIG. 8. (Color online) Convergence

comparison of NSGA-II and MNSGA-II

for the hyperchaotic Rössler system with

constrained C.

FIG. 9. (Color online) Synchronization error of DCNN when using different

coupling strength.
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