220 research outputs found

    Analysis and Visualization of 3D Motion Data for UPDRS Rating of Patients with Parkinson's Disease

    Get PDF
    Remote monitoring of Parkinson's Disease (PD) patients with inertia sensors is a relevant method for a better assessment of symptoms. We present a new approach for symptom quantification based on motion data: the automatic Unified Parkinson Disease Rating Scale (UPDRS) classification in combination with an animated 3D avatar giving the neurologist the impression of having the patient live in front of him. In this study we compared the UPDRS ratings of the pronation-supination task derived from: (a) an examination based on video recordings as a clinical reference;(b) an automatically classified UPDRS;and (c) a UPDRS rating from the assessment of the animated 3D avatar. Data were recorded using Magnetic, Angular Rate, Gravity (MARG) sensors with 15 subjects performing a pronation- supination movement of the hand. After preprocessing, the data were classified with a J48 classifier and animated as a 3D avatar. Video recording of the movements, as well as the 3D avatar, were examined by movement disorder specialists and rated by UPDRS. The mean agreement between the ratings based on video and (b) the automatically classified UPDRS is 0.48 and with (c) the 3D avatar it is 0.47. The 3D avatar is similarly suitable for assessing the UPDRS as video recordings for the examined task and will be further developed by the research team

    A case study of a transported bromine explosion event in the Canadian high arctic

    Get PDF
    Ozone depletion events in the polar troposphere have been linked to extremely high concentrations of bromine, known as bromine explosion events (BEE). However, the optimum meteorological conditions for the occurrence of these events remain uncertain. On 4–5 April 2011, a combination of both blowing snow and a stable shallow boundary layer was observed during a BEE at Eureka, Canada (86.4°W, 80.1°N). Measurements made by a Multi-Axis Differential Optical Absorption Spectroscopy spectrometer were used to retrieve BrO profiles and partial columns. During this event, the near-surface BrO volume mixing ratio increased to ~20 parts per trillion by volume, while ozone was depleted to ~1 ppbv from the surface to 700 m. Back trajectories and Global Ozone Monitoring Experiment-2 satellite tropospheric BrO columns confirmed that this event originated from a bromine explosion over the Beaufort Sea. From 30 to 31 March, meteorological data showed high wind speeds (24 m/s) and elevated boundary layer heights (~800 m) over the Beaufort Sea. Long-distance transportation (~1800 km over 5 days) to Eureka indicated strong recycling of BrO within the bromine plume. This event was generally captured by a global chemistry-climate model when a sea-salt bromine source from blowing snow was included. A model sensitivity study indicated that the surface BrO at Eureka was controlled by both local photochemistry and boundary layer dynamics. Comparison of the model results with both ground-based and satellite measurements confirmed that the BEE observed at Eureka was triggered by transport of enhanced BrO from the Beaufort Sea followed by local production/recycling under stable atmospheric shallow boundary layer conditions

    Comprehensive evaluation of the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis against independent observations: Reactive gases

    Get PDF
    The Copernicus Atmosphere Monitoring Service (CAMS) is operationally providing forecast and reanalysis products of air quality and atmospheric composition. In this article, we present an extended evaluation of the CAMS global reanalysis data set of four reactive gases, namely, ozone (O-3), carbon monoxide (CO), nitrogen dioxide (NO2), and formaldehyde (HCHO), using multiple independent observations. Our results show that the CAMS model system mostly provides a stable and accurate representation of the global distribution of reactive gases over time. Our findings highlight the crucial impact of satellite data assimilation and emissions, investigated through comparison with a model run without assimilated data. Stratospheric and tropospheric O-3 are mostly well constrained by the data assimilation, except over Antarctica after 2012/2013 due to changes in the assimilated data. Challenges remain for O-3 in the Tropics and high-latitude regions during winter and spring. At the surface and for short-lived species (NO2), data assimilation is less effective. Total column CO in the CAMS reanalysis is well constrained by the assimilated satellite data. The control run, however, shows large overestimations of total column CO in the Southern Hemisphere and larger year-to-year variability in all regions. Concerning the long-term stability of the CAMS model, we note drifts in the time series of biases for surface O-3 and CO in the Northern midlatitudes and Tropics and for NO2 over East Asia, which point to biased emissions. Compared to the previous Monitoring Atmospheric Composition and Climate reanalysis, changes in the CAMS chemistry module and assimilation system helped to reduce biases and enhance the long-term temporal consistency of model results for the CAMS reanalysis

    Modeling the Sources and Chemistry of Polar Tropospheric Halogens (Cl, Br, and I) Using the CAM-Chem Global Chemistry-Climate Model

    Get PDF
    31 pags., 12 figs., 6 tabs. -- Open Access funded by Creative Commons Atribution Licence 4.0. -- jame20925-sup-0001_Supporting_Information.pdfCurrent chemistry climate models do not include polar emissions and chemistry of halogens. This work presents the first implementation of an interactive polar module into the very short-lived (VSL) halogen version of the Community Atmosphere Model with Chemistry (CAM-Chem) model. The polar module includes photochemical release of molecular bromine, chlorine, and interhalogens from the sea-ice surface, and brine diffusion of iodine biologically produced underneath and within porous sea-ice. It also includes heterogeneous recycling of inorganic halogen reservoirs deposited over fresh sea-ice surfaces and snow-covered regions. The polar emission of chlorine, bromine, and iodine reach approximately 32, 250, and 39 Gg/year for Antarctica and 33, 271, and 4 Gg/year for the Arctic, respectively, with a marked seasonal cycle mainly driven by sunlight and sea-ice coverage. Model results are validated against polar boundary layer measurements of ClO, BrO, and IO, and satellite BrO and IO columns. This validation includes satellite observations of IO over inner Antarctica for which an iodine “leapfrog” mechanism is proposed to transport active iodine from coastal source regions to the interior of the continent. The modeled chlorine and bromine polar sources represent up to 45% and 80% of the global biogenic VSL and VSL emissions, respectively, while the Antarctic sea-ice iodine flux is ~10 times larger than that from the Southern Ocean. We present the first estimate of the contribution of polar halogen emissions to the global tropospheric halogen budget. CAM-Chem includes now a complete representation of halogen sources and chemistry from pole-to-pole and from the Earth's surface up to the stratopause.This study has been funded by the European Research Council Executive Agency under the European Union′s Horizon 2020 Research and Innovation program (Project “ERC‐2016‐COG 726349 CLIMAHAL”) and supported by the Consejo Superior de Investigaciones Científicas (CSIC) of Spain. Computing resources, support, and data storage are provided and maintained by the Computational and Information System Laboratory from the National Center of Atmospheric Research (CISL,2017). R. P. F. would like to thank CONICET, ANPCyT (PICT 2015‐0714), UNCuyo (SeCTyP M032/3853), and UTN (PID 4920‐194/2018) for the financial support. Partial funding for this work was provided by the Korea Polar Research Institute (KOPRI) project (PE18200). The contributions of the University of Bremen have been supported by the State of Bremen, the German Research Foundation (DFG), the German Aerospace (DLR), and the European Space Agency (ESA). We gratefully acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) —Projektnummer 268020496—TRR 172, within the Transregional Collaborative Research Center “ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes,and Feedback Mechanisms (AC)3 ” in subproject C03 as well as the support by the University of Bremen Institutional Strategy Measure M8 in the framework of the DFG Excellence Initiative

    SNAI1 expression and the mesenchymal phenotype: an immunohistochemical study performed on 46 cases of oral squamous cell carcinoma

    Get PDF
    Abstract Background SNAI1 can initiate epithelial-mesenchymal transition (EMT), leading to loss of epithelial characteristics and, in cancer, to invasion and metastasis. We hypothesized that SNAI1 reactivation occurs in oral squamous cell carcinoma (OSCC) where it might also be associated with focal adhesion kinase (FAK) expression and p63 loss. Methods Immunohistochemistry was performed on 46 tumors and 26 corresponding lymph node metastases. Full tissue sections were examined to account for rare and focal expression. Clinical outcome data were collected and analyzed. Results SNAI1-positivity (nuclear, ≥ 5% tumor cells) was observed in 10 tumors and 5 metastases (n = 12 patients). Individual SNAI1(+) tumor cells were seen in primary tumors of 30 patients. High level SNAI1 expression (>10% tumor cells) was rare, but significantly associated with poor outcome. Two cases displayed a sarcomatoid component as part of the primary tumor with SNAI1(+)/FAK(+)/E-cadherin(-)/p63(-) phenotype, but disparate phenotypes in corresponding metastases. All cases had variable SNAI1(+) stroma. A mesenchymal-like immunoprofile in primary tumors characterized by E-cadherin loss (n = 29, 63%) or high cytoplasmic FAK expression (n = 10, 22%) was associated with N(+) status and tumor recurrence/new primary, respectively. Conclusions SNAI1 is expressed, although at low levels, in a substantial proportion of OSCC. High levels of SNAI1 may herald a poor prognosis and circumscribed SNAI1 expression can indicate the presence of a sarcomatoid component. Absence of p63 in this context does not exclude squamous tumor origin. Additional EMT inducers may contribute to a mesenchymal-like phenotype and OSCC progression

    Anticancer Effects of 15d-Prostaglandin-J2 in Wild-Type and Doxorubicin-Resistant Ovarian Cancer Cells: Novel Actions on SIRT1 and HDAC

    Get PDF
    15-deoxy-delta-12,14-prostaglandin-J2 (15d-PGJ2), an arachidonic metabolite and a natural PPARγ agonist, is known to induce apoptosis in tumor cells. In this study, we investigated new therapeutic potentials of 15d-PGJ2 by determining its anticancer effects in wild-type and doxorubicin-resistant ovarian carcinoma cells. Despite high expression of resistance-inducing genes like MDR1, Bcl2 and Bcl-xl, 15d-PGJ2 strongly induced apoptosis in doxorubicin-resistant (A2780/AD) cells similar to the wild-type (A2780). This was found to be related to caspase-3/7- and NF-κB pathways but not to its PPARγ agonistic activity. 15d-PGJ2 also was able to reduce the doxorubicin resistance of A2780/AD cells at low doses as confirmed by the inhibition of gene expression of MDR1 (p-glycoprotein) and SIRT1 (a drug senescence gene). We also investigated effects of 15d-PGJ2 on cell migration and transformation using a wound-healing assay and morphological analyses, respectively. We found that 15d-PGJ2 inhibited migration most likely due to NF-κB inhibition and induced transformation of the round-shape A2780/AD cells into elongated epithelial cells due to HDAC1 inhibition. Using a 15d-PGJ2 analog, we found the mechanism of action of these new activities of 15d-PGJ2 on SIRT1 and HDAC1 gene expressions and enzyme activities. In conclusion, the present study demonstrates that 15d-PGJ2 has a high therapeutic potential to kill drug-resistant tumor cells and, the newly described inhibitory effects of this cyclo-oxygenase product on SIRT1 and HDAC will provide new opportunities for cancer therapeutics

    The E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients

    Get PDF
    Epithelial ovarian cancer is the leading cause of death among female genital malignancies. Reduced expression of the cell adhesion molecule E-cadherin was previously shown to be associated with adverse prognostic features. The role of the E-cadherin repressor Snail in ovarian cancer progression remains to be elucidated. We analysed formalin-fixed and paraffin-embedded specimens of 48 primary ovarian tumours and corresponding metastases for expression of E-cadherin and Snail by immunohistochemistry. We found a significant correlation between E-cadherin expression in primary cancers and their corresponding metastases (P<0.001). This correlation was found for Snail expression as well (P<0.001). There was a significant (P=0.008) association of reduced E-cadherin expression in primary ovarian cancer with shorter overall survival. Similarly, Snail expression in corresponding metastases (P=0.047) was associated with reduced overall survival of the patients. Additionally, the group of patients showing reduced E-cadherin and increased Snail immunoreactivity in primary tumours and corresponding metastases, respectively, had a significantly higher risk of death (P=0.002 and 0.022, respectively) when compared to the patient group with the reference expression profile E-cadherin positive and Snail negative. Taken together, the results of our study show that the E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients

    The Development of Mouse APECED Models Provides New Insight into the Role of AIRE in Immune Regulation

    Get PDF
    Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy is a rare recessive autoimmune disorder caused by a defect in a single gene called AIRE (autoimmune regulator). Characteristics of this disease include a variable combination of autoimmune endocrine tissue destruction, mucocutaneous candidiasis and ectodermal dystrophies. The development of Aire-knockout mice has provided an invaluable model for the study of this disease. The aim of this review is to briefly highlight the strides made in APECED research using these transgenic murine models, with a focus on known roles of Aire in autoimmunity. The findings thus far are compelling and prompt additional areas of study which are discussed

    Invasion of ovarian cancer cells is induced by PITX2-mediated activation of TGF-β and Activin-A

    Get PDF
    Background:Most ovarian cancers are highly invasive in nature and the high burden of metastatic disease make them a leading cause of mortality among all gynaecological malignancies. The homeodomain transcription factor, PITX2 is associated with cancer in different tissues. Our previous studies demonstrated increased PITX2 expression in human ovarian tumours. Growing evidence linking activation of TGF-β pathway by homeodomain proteins prompted us to look for the possible involvement of this signalling pathway in PITX2-mediated progression of ovarian cancer. Methods: The status of TGF-β signalling in human ovarian tissues was assessed by immunohistochemistry. The expression level of TGFB/INHBA and other invasion-associated genes was measured by quantitative-PCR (Q-PCR) and Western Blot after transfection/treatments with clones/reagents in normal/cancer cells. The physiological effect of PITX2 on invasion/motility was checked by matrigel invasion and wound healing assay. The PITX2- and activin-induced epithelial-mesenchymal transition (EMT) was evaluated by Q-PCR of respective markers and confocal/phase-contrast imaging of cells. Results: Human ovarian tumours showed enhanced TGF-β signalling. Our study uncovers the PITX2-induced expression of TGFB1/2/3 as well as INHBA genes (p < 0.01) followed by SMAD2/3-dependent TGF-β signalling pathway. PITX2-induced TGF-β pathway regulated the expression of invasion-associated genes, SNAI1, CDH1 and MMP9 (p < 0.01) that accounted for enhanced motility/invasion of ovarian cancers. Snail and MMP9 acted as important mediators of PITX2-induced invasiveness of ovarian cancer cells. PITX2 over-expression resulted in loss of epithelial markers (p < 0.01) and gain of mesenchymal markers (p < 0.01) that contributed significantly to ovarian oncogenesis. PITX2-induced INHBA expression (p < 0.01) contributed to EMT in both normal and ovarian cancer cells. Conclusions: Overall, our findings suggest a significant contributory role of PITX2 in promoting invasive behaviour of ovarian cancer cells through up-regulation of TGFB/INHBA. We have also identified the previously unknown involvement of activin-A in promoting EMT. Our work provides novel mechanistic insights into the invasive behavior of ovarian cancer cells. The extension of this study have the potential for therapeutic applications in future
    corecore