168 research outputs found

    Active Berkeleyanism: Containing an exposition of an improved methodology for Berkeleyan scholarship via a new unified interpretation of Berkeleyanism, with objections and replies

    Get PDF
    This dissertation demonstrates an improved methodology for Berkeleyan scholarship. This improved methodology, which I call Active Berkeleyanism, seeks to incorporate Berkeley’s corpus, his biography, and Berkeleyan scholarship in order to open new possibilities of understanding and interpretation of Berkeleyanism. To express and exhibit this improved methodology, this dissertation offers a new unified interpretation of Berkeleyanism which highlights the content, purpose, scope, method, and importance of the 1710 Design for Berkeleyanism. This new unified interpretation is a product of Active Berkeleyanism and must not be confused with Active Berkeleyanism as a methodology. This new unified interpretation argues for a commonality of aims under the 1710 Design: the general aim of bringing Berkeley’s audience to a proper understanding and activity in their relationships with each other, the world, and God; and the final aim of preparing his audience for Anglican salvation. Having completed the exposition of Active Berkeleyanism and the new unified interpretation, this dissertation turns to possible objections against Active Berkeleyanism, the final aim of the 1710 Design, and the non-abandonment of the 1710 Design. This dissertation concludes with a summary of the important points contained herein and suggestions of further research using the methodology of Active Berkeleyanism

    Tissue specific expression of PvPGIP2 to improve wheat resistance against Fusarium graminearum

    Get PDF
    Fusarium Head Blight (FHB) is one of the most important wheat diseases caused by Fusarium spp.. The pathogen infects the spike at flowering time and causes severe yield losses and deterioration of grain quality due to the secretion of mycotoxins during infection. The understanding of the precise mode of pathogen entering and the subsequent floral tissue colonize is a crucial point to control FHB. Polygalacturonase inhibiting proteins (PGIPs) are cell wall proteins that inhibit the pectin-depolymerizing activity of polygalacturonases (PGs) secreted by pathogens. The constitutive expression of the bean PvPGIP2 limits FHB symptoms and reduces mycotoxin accumulation in wheat. To better understand which spike tissues plays a role in limiting Fusarium infection, we have produced transgenic wheat plants expressing PvPGIP2 in the endosperm or simultaneously in lemma, palea, anthers and rachis. This latter approach reduced FHB symptoms, whereas the expression of PvPGIP2 only in the endosperm did not affect FHB development, indicating that when the pathogen has reached the endosperm, inhibition of pathogen PGs ineffective to prevent fungal spread

    The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana

    Get PDF
    In several plant-pathogen interactions to overcome the barrier represented by cell wall most fungal pathogens produce a variety of hydrolytic enzymes and between them PGs are one of the first to be secreted. We demonstrate that transgenic wheat plants expressing PvPGIP2 showed a significant reduction of symptoms following the infection of Bipolaris sorokiniana suggesting that pectin hydrolysis is an important step for fungal penetration of wheat plants.In molti sistemi pianta patogeno i patogeni al fine di superare l’ostacolo rappresentato dalla parete cellulare producono degli enzimi idrolitici tra cui le Poligalatturonasi ( PG) sono tra i primi ad essere secreti. In questo lavoro dimostriamo che piante transgeniche di frumento sovraesprimenti la PvPGIP2 mostrano una significativa riduzione nella sintomatologia riscontrata in seguito ad infezione con Bipolaris sorokiniana suggerendo che l’idrolisi della pectina rappresenta uno step importante per la penetrazione e la colonizzazione dei tessuti di frumento.L'articolo é disponibile sul sito dell'editore: http://www.apsjournals.apsnet.or

    Tissue-specific expression of PvPGIP2 to improve wheat resistance against Fusarium graminearum

    Get PDF
    Fusarium Head Blight (FHB) is one of the most important wheat diseases caused by some fungi of the genus Fusarium. The pathogen infects the spike at flowering time and causes severe yield losses and deterioration of grain quality due to the secretion of mycotoxins during infection. The understanding of the precise mode of pathogen entering and the subsequent floral tissue colonize is a crucial point to control FHB. Polygalacturonase inhibiting proteins (PGIPs) are cell wall proteins that inhibit the pectin-depolymerizing activity of polygalacturonases (PGs) secreted by microbial pathogens and insects. The constitutive expression of the bean PvPGIP2 limits FHB symptoms and reduces mycotoxin accumulation in wheat. To better understand the spike tissues that play a role in limiting Fusarium infection, we have produced transgenic wheat plants expressing PvPGIP2 or in the endosperm or simultaneously in lemma, palea, anthers and rachis. We showed that this latter approach reduced FHB symptoms caused by F. graminearum compared to control non transgenic plants. The extent of disease symptom reduction was similar to what obtained when PvPGIP2 was expressed constitutively. We showed also that different level of PvPGIP2 accumulation produced similar level of protection. Conversely, the expression of PvPGIP2 only in the endosperm did not affect FHB symptom development, indicating that when the pathogen has reached the endosperm, inhibition of the polygalacturonase (PG) activity of the pathogen is ineffective to prevent fungal spread. Probably the rich source of the endosperm tissue makes the PG activity dispensable for pathogen colonization. Alternatively, the massive growth of the fungus at this stage produces a large amount of PG that is not inhibited by the available PGIP

    EXPRESSION OF BEAN PGIP2 UNDER CONTROL OF THE BARLEY LEM1 PROMOTER LIMITS FUSARIUM GRAMINEARUM INFECTION IN WHEAT

    Get PDF
    Fusarium Head Blight (FHB) caused by Fusarium graminearum is one of the most destructive fungal diseases of wheat worldwide. The pathogen infects the spike at flowering time and causes severe yield losses, deterioration of grain quality, and accumulation of mycotoxins. Better understanding of the means of pathogen entry and colonization of floral tissue is crucial to providing effective protection against FHB. Polygalacturonase inhibiting proteins (PGIPs) are cell wall proteins that inhibit the activity of polygalacturonases (PGs), a class of pectin-depolymerizing enzymes secreted by microbial pathogens, including Fusaria. The constitutive expression of a bean PGIP (PvPGIP2) under control of the maize Ubi1 promoter limits FHB symptoms and reduces mycotoxin accumulation in wheat grain [Janni et al. 2008 Molec. Plant Microb. Interact. 21:171]. To better understand which spike tissues play major roles in limiting F. graminearum infection, we explored the use of PvPGIP2 to defend specific spike tissues by expressing it under control of the barley Lem1 promoter [Somleva and Blechl 2005 Cer. Res. Comm. 33:665]. We show here that the expression of PvPGIP2 in lemma, palea, rachis and anthers reduced FHB symptoms caused by F. graminearum compared to symptoms in infected nontransgenic plants. However, the expression of PvPGIP2 only in the endosperm under control of a HMW-glutenin gene promoter did not affect FHB symptom development, indicating that once the pathogen has reached the endosperm, inhibition of the pathogen\u2019s PG activity is not effective in preventing its further spread

    Clonado posicional de los genes de vernalización de trigo

    Get PDF
    Con el objetivo de llegar a un mayor entendimiento del mecanismo del proceso de vernalización y su interacción con otros factores ambientales en la determinación del momento de floración en el trigo se planteó como primer paso el aislamiento de los genes Vrn1 y Vrn2 utilizando como estrategia el clonado posicional. El clonado mediante caminata cromosómica en el trigo reviste cierta complejidad debido al gran tamaño del genoma (5.600 Mb en el genoma haploide de Triticum monoccum, AmAm, y 16.000 Mb en el de T. aestivum, AABBDD) y la abundancia de elementos repetitivos. A fin de disminuir la probabilidad de que estos elementos repetitivos detuvieran la caminata, tanto para el clonado de Vrn1 como el de Vrn2, se utilizaron las regiones ortólogas de arroz, cebada y sorgo como puntos de apoyo para superar estas regiones genómicas. En este artículo se resumen los logros alcanzados en el clonado posicional de Vrn1 y Vrn2 y se plantea un modelo para explicar a nivel molecular las interacciones entre estos genes.Academia Nacional de Agronomía y Veterinari

    Recommendations for the Transition to Open Access in Austria

    Get PDF
    Based on 16 recommendations, efforts should be made to achieve the following goal: By 2025, a large part of all scholarly publication activity in Austria should be Open Access. In other words, the final versions of most scholarly publications (in particular all refereed journal articles and conference proceedings) resulting from the support of public resources must be freely accessible on the Internet without delay (Gold Open Access). This goal should be pursued by taking into account the different disciplinary practices and under consideration of the different disciplinary priorisations of Open Access. The resources required to meet this obligation shall be provided to the authors, or the cost of the publication venues shall be borne directly by the research organisations. The necessary funding must be brought in line with the overall funding priorities for research

    Clonado posicional de los genes de vernalización de trigo

    Get PDF
    Con el objetivo de llegar a un mayor entendimiento del mecanismo del proceso de vernalización y su interacción con otros factores ambientales en la determinación del momento de floración en el trigo se planteó como primer paso el aislamiento de los genes Vrn1 y Vrn2 utilizando como estrategia el clonado posicional. El clonado mediante caminata cromosómica en el trigo reviste cierta complejidad debido al gran tamaño del genoma (5.600 Mb en el genoma haploide de Triticum monoccum, AmAm, y 16.000 Mb en el de T. aestivum, AABBDD) y la abundancia de elementos repetitivos. A fin de disminuir la probabilidad de que estos elementos repetitivos detuvieran la caminata, tanto para el clonado de Vrn1 como el de Vrn2, se utilizaron las regiones ortólogas de arroz, cebada y sorgo como puntos de apoyo para superar estas regiones genómicas. En este artículo se resumen los logros alcanzados en el clonado posicional de Vrn1 y Vrn2 y se plantea un modelo para explicar a nivel molecular las interacciones entre estos genes.Academia Nacional de Agronomía y Veterinari

    Clonado posicional de los genes de vernalización de trigo

    Get PDF
    Con el objetivo de llegar a un mayor entendimiento del mecanismo del proceso de vernalización y su interacción con otros factores ambientales en la determinación del momento de floración en el trigo se planteó como primer paso el aislamiento de los genes Vrn1 y Vrn2 utilizando como estrategia el clonado posicional. El clonado mediante caminata cromosómica en el trigo reviste cierta complejidad debido al gran tamaño del genoma (5.600 Mb en el genoma haploide de Triticum monoccum, AmAm, y 16.000 Mb en el de T. aestivum, AABBDD) y la abundancia de elementos repetitivos. A fin de disminuir la probabilidad de que estos elementos repetitivos detuvieran la caminata, tanto para el clonado de Vrn1 como el de Vrn2, se utilizaron las regiones ortólogas de arroz, cebada y sorgo como puntos de apoyo para superar estas regiones genómicas. En este artículo se resumen los logros alcanzados en el clonado posicional de Vrn1 y Vrn2 y se plantea un modelo para explicar a nivel molecular las interacciones entre estos genes.Academia Nacional de Agronomía y Veterinari

    Advancing Crop Transformation in the Era of Genome Editing

    Get PDF
    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized
    corecore