9 research outputs found

    Lifestyle Factors and Breast Cancer in Females with PTEN Hamartoma Tumor Syndrome (PHTS)

    Full text link
    Simple Summary: Females with PTEN Hamartoma Tumor Syndrome (PHTS) have very high hereditary breast cancer risks up to 76%. The aim of this European cohort study was to the describe the lifestyle in PHTS patients and to assess associations between physical activity, alcohol consumption, tobacco smoking, BMI and breast cancer in female adult PHTS patients. It was observed that of 125 patients who completed the questionnaire, 81% were >= 2 times/week physically active, 86% consumed on average = 2 times (ORtotal-adj = 0.9 (95%CI 0.3-2.6); consumed daily about 1.2-1.8 times more often >= 1 than 0-1 glasses of alcohol (ORtotal-adj = 1.2 (95%CI 0.4-4.0); ORnon-breastcancer-index-adj = 1.8 (95%CI 0.4-6.9); were about 1.04-1.3 times more often smokers than non-smokers (ORtotal-adj = 1.04 (95%CI 0.4-2.8); ORnon-breastcancer-index-adj = 1.3 (95%CI 0.4-4.2)); and overweight or obesity (72%) was about 1.02-1.3 times less common (ORtotal-adj = 0.98 (95%CI 0.4-2.6); ORnon-breastcancer-index-adj = 0.8 (95%CI 0.3-2.7)). Similar associations between lifestyle and breast cancer are suggested for PHTS and the general population. Despite not being statistically significant, results are clinically relevant and suggest that awareness of the effects of lifestyle on patients' breast cancer risk is important

    BRD4 interacts with NIPBL and BRD4 is mutated in a Cornelia de Lange-like syndrome

    Get PDF
    We found that the clinical phenotype associated with BRD4 haploinsufficiency overlapped with that of Cornelia de Lange syndrome (CdLS), which is most often caused by mutation of NIPBL. More typical CdLS was observed with a de novo BRD4 missense variant, which retained the ability to coimmunoprecipitate with NIPBL, but bound poorly to acetylated histones. BRD4 and NIPBL displayed correlated binding at super-enhancers and appeared to co-regulate developmental gene expression

    Cancer risks by sex and variant type in PTEN hamartoma tumor syndrome.

    Get PDF
    BACKGROUND: PTEN Hamartoma Tumor Syndrome (PHTS) is a rare syndrome with a broad phenotypic spectrum, including increased risks of breast (BC, 67%-78% at age 60 years), endometrial (EC, 19%-28%), and thyroid cancer (TC, 6%-38%). Current risks are likely overestimated due to ascertainment bias. We aimed to provide more accurate and personalized cancer risks. METHODS: This was a European, adult PHTS cohort study with data from medical files, registries, and/or questionnaires. Cancer risks and hazard ratios were assessed with Kaplan-Meier and Cox regression analyses, and standardized incidence ratios were calculated. Bias correction consisted of excluding cancer index cases and incident case analyses. RESULTS: A total of 455 patients were included, including 50.5% index cases, 372 with prospective follow-up (median 6 years, interquartile range = 3-10 years), and 159 of 281 females and 39 of 174 males with cancer. By age 60 years, PHTS-related cancer risk was higher in females (68.4% to 86.3%) than males (16.4% to 20.8%). Female BC risks ranged from 54.3% (95% confidence interval [CI] = 43.0% to 66.4%) to 75.8% (95% CI = 60.7% to 88.4%), with two- to threefold increased risks for PTEN truncating and approximately twofold for phosphatase domain variants. EC risks ranged from 6.4% (95% CI = 2.1% to 18.6%) to 22.1% (95% CI = 11.6% to 39.6%) and TC risks from 8.9% (95% CI = 5.1% to 15.3%) to 20.5% (95% CI = 11.3% to 35.4%). Colorectal cancer, renal cancer, and melanoma risks were each less than 10.0%. CONCLUSIONS: Females have a different BC risk depending on their PTEN germline variant. PHTS patients are predominantly at risk of BC (females), EC, and TC. This should be the main focus of surveillance. These lower, more unbiased and personalized risks provide guidance for optimized cancer risk management

    Cancer risks by sex and variant type in PTEN Hamartoma Tumor Syndrome

    Get PDF
    BACKGROUND: PTEN Hamartoma Tumor Syndrome (PHTS) is a rare syndrome with a broad phenotypic spectrum, including increased risks of breast (BC, 67-78% at age 60), endometrial (EC, 19-28%) and thyroid cancer (TC, 6-38%). Current risks are likely overestimated due to ascertainment bias. We aimed to provide more accurate and personalized cancer risks. METHODS: A European, adult PHTS cohort study with data from medical files, registries and/or questionnaires. Cancer risks and hazard ratios were assessed with Kaplan-Meier and Cox regression analyses, and standardized incidence ratios (SIR) were calculated. Bias correction consisted of excluding cancer index cases and incident case analyses. RESULTS: 455 patients were included, including 50.5% index cases, 372 with prospective follow-up (median 6 year, IQR : 3-10), and 159/281 females and 39/174 males with cancer. By age 60, PHTS-related cancer risk was higher in females (68.4% to 86.3%) than males (16.4% to 20.8%). Female BC risks ranged from 54.3% (95%CI 43.0-66.4) to 75.8% (95%CI 60.7-88.4), with two-to-three-fold increased risks for PTEN truncating and about two-fold for phosphatase domain variants. EC risks ranged from 6.4% (95%CI 2.1-18.6) to 22.1% (95%CI 11.6-39.6), and TC risks from 8.9% (95%CI 5.1-15.3) to 20.5% (95%CI 11.3-35.4). Colorectal cancer, renal cancer and melanoma risks were each below 10.0%. CONCLUSION: Females have a different breast cancer risk depending on their PTEN germline variant. PHTS patients are predominantly at risk of breast (females), endometrial and thyroid cancer. This should be the main focus of surveillance. These lower, more unbiased and personalized risks provide guidance for optimized cancer risk management

    Heterozygous loss-of-function SMC3 variants are associated with variable and incompletely penetrant growth and developmental features.

    No full text
    Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 13 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated a milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, some instead having intriguing symptomatologies with rational biological links to SMC3 including bone marrow failure, acute myeloid leukemia, and Coats retinal vasculopathy. Analyses of transcriptomic and epigenetic data suggest that SMC3 pLoF variants reduce SMC3 expression but do not result in a blood DNA methylation signature clustering with that of CdLS, and that the global transcriptional signature of SMC3 loss is model-dependent. Our finding of substantial population-scale LoF intolerance in concert with variable penetrance in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multi-layered genomic data paired with careful phenotyping. </p

    Heterozygous loss-of-function SMC3 variants are associated with variable growth and developmental features

    No full text
    Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multi-layered genomic data paired with careful phenotyping.</p

    Guidelines for the Li–Fraumeni and heritable TP53-related cancer syndromes

    No full text
    Fifty years after the recognition of the Li–Fraumeni syndrome (LFS), our perception of cancers related to germline alterations of TP53 has drastically changed: (i) germline TP53 alterations are often identified among children with cancers, in particular soft-tissue sarcomas, adrenocortical carcinomas, central nervous system tumours, or among adult females with early breast cancers, without familial history. This justifies the expansion of the LFS concept to a wider cancer predisposition syndrome designated heritable TP53-related cancer (hTP53rc) syndrome; (ii) the interpretation of germline TP53 variants remains challenging and should integrate epidemiological, phenotypical, bioinformatics prediction, and functional data; (iii) the penetrance of germline disease-causing TP53 variants is variable, depending both on the type of variant (dominant-negative variants being associated with a higher can
    corecore