10 research outputs found
Search for astronomical neutrinos from blazar TXS 0506+056 in super-kamiokande
We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the direction of the blazar TXS 0506+056 using the Super-Kamiokande detector following the detection of a 100 TeV neutrinos from the same location by the IceCube collaboration. Using Super-Kamiokande neutrino data across several data samples observed from 1996 April to 2018 February we have searched for both a total excess above known backgrounds across the entire period as well as localized excesses on smaller timescales in that interval. No significant excess nor significant variation in the observed event rate are found in the blazar direction. Upper limits are placed on the electron- and muon-neutrino fluxes at the 90% confidence level as 6.0 Ă 10â7 and 4.5 Ă 10â7â9.3 Ă 10â10 [erg cmâ2 sâ1], respectively
A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande
Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW 10 sec integrated proton beam power (corresponding to protons on target with a 30 GeV proton beam) to a -degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the phase can be determined to better than 19 degrees for all possible values of , and violation can be established with a statistical significance of more than () for () of the parameter space
Worldwide comparison of survival from childhood leukaemia for 1995â2009, by subtype, age, and sex (CONCORD-2): a population-based study of individual data for 89â828 children from 198 registries in 53 countries
Background Global inequalities in access to health care are reflected in differences in cancer survival. The CONCORD programme was designed to assess worldwide differences and trends in population-based cancer survival. In this population-based study, we aimed to estimate survival inequalities globally for several subtypes of childhood leukaemia.
Methods Cancer registries participating in CONCORD were asked to submit tumour registrations for all children aged 0-14 years who were diagnosed with leukaemia between Jan 1, 1995, and Dec 31, 2009, and followed up until Dec 31, 2009. Haematological malignancies were defined by morphology codes in the International Classification of Diseases for Oncology, third revision. We excluded data from registries from which the data were judged to be less reliable, or included only lymphomas, and data from countries in which data for fewer than ten children were available for analysis. We also excluded records because of a missing date of birth, diagnosis, or last known vital status. We estimated 5-year net survival (ie, the probability of surviving at least 5 years after diagnosis, after controlling for deaths from other causes [background mortality]) for children by calendar period of diagnosis (1995-99, 2000-04, and 2005-09), sex, and age at diagnosis (< 1, 1-4, 5-9, and 10-14 years, inclusive) using appropriate life tables. We estimated age-standardised net survival for international comparison of survival trends for precursor-cell acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML).
Findings We analysed data from 89 828 children from 198 registries in 53 countries. During 1995-99, 5-year agestandardised net survival for all lymphoid leukaemias combined ranged from 10.6% (95% CI 3.1-18.2) in the Chinese registries to 86.8% (81.6-92.0) in Austria. International differences in 5-year survival for childhood leukaemia were still large as recently as 2005-09, when age-standardised survival for lymphoid leukaemias ranged from 52.4% (95% CI 42.8-61.9) in Cali, Colombia, to 91.6% (89.5-93.6) in the German registries, and for AML ranged from 33.3% (18.9-47.7) in Bulgaria to 78.2% (72.0-84.3) in German registries. Survival from precursor-cell ALL was very close to that of all lymphoid leukaemias combined, with similar variation. In most countries, survival from AML improved more than survival from ALL between 2000-04 and 2005-09. Survival for each type of leukaemia varied markedly with age: survival was highest for children aged 1-4 and 5-9 years, and lowest for infants (younger than 1 year). There was no systematic difference in survival between boys and girls.
Interpretation Global inequalities in survival from childhood leukaemia have narrowed with time but remain very wide for both ALL and AML. These results provide useful information for health policy makers on the effectiveness of health-care systems and for cancer policy makers to reduce inequalities in childhood survival
Physics Potentials with the Second Hyper-Kamiokande Detector in Korea
We have conducted sensitivity studies on an alternative configuration of the Hyper-Kamiokande experiment by locating the 2nd Hyper-Kamiokande detector in Korea at 11001300 km baseline. Having two detectors at different baselines improves sensitivity to leptonic CP violation, neutrino mass ordering as well as nonstandard neutrino interactions. There are several candidate sites in Korea with greater than 1 km high mountains ranged at an 13 degree off-axis angle. Thanks to larger overburden of the candidate sites in Korea, low energy physics, such as solar and supernova neutrino physics as well as dark matter search, is expected to be improved. In this paper sensitivity studies on the CP violation phase and neutrino mass ordering are performed using current T2K systematic uncertainties in most cases. We plan to improve our sensitivity studies in the near future with better estimation of our systematic uncertainties
A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande
Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW 10 sec integrated proton beam power (corresponding to protons on target with a 30 GeV proton beam) to a -degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the phase can be determined to better than 19 degrees for all possible values of , and violation can be established with a statistical significance of more than () for () of the parameter space
Recommended from our members
Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light
Abstract
Doping of liquid argon TPCs (LArTPCs) with a small
concentration of xenon is a technique for light-shifting and
facilitates the detection of the liquid argon scintillation
light. In this paper, we present the results of the first doping
test ever performed in a kiloton-scale LArTPC. From February to May
2020, we carried out this special run in the single-phase DUNE Far
Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total
liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen
contamination was present during the xenon doping campaign. The goal
of the run was to measure the light and charge response of the
detector to the addition of xenon, up to a concentration of
18.8 ppm. The main purpose was to test the possibility for
reduction of non-uniformities in light collection, caused by
deployment of photon detectors only within the anode planes. Light
collection was analysed as a function of the xenon concentration, by
using the pre-existing photon detection system (PDS) of ProtoDUNE-SP
and an additional smaller set-up installed specifically for this
run. In this paper we first summarize our current understanding of
the argon-xenon energy transfer process and the impact of the
presence of nitrogen in argon with and without xenon dopant. We then
describe the key elements of ProtoDUNE-SP and the injection method
deployed. Two dedicated photon detectors were able to collect the
light produced by xenon and the total light. The ratio of these
components was measured to be about 0.65 as 18.8 ppm of xenon were
injected. We performed studies of the collection efficiency as a
function of the distance between tracks and light detectors,
demonstrating enhanced uniformity of response for the anode-mounted
PDS. We also show that xenon doping can substantially recover light
losses due to contamination of the liquid argon by nitrogen.</jats:p