19 research outputs found

    Spectroscopic Evidence and Density Functional Theory (DFT) Analysis of Low-Temperature Oxidation of Cu+ to Cu2+NOx in Cu-CHA Catalysts: Implications for the SCR-NOx Reaction Mechanism

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acscatal.8b04717."[EN] Despite the intense investigation on the NH3-SCR-NOx reaction mechanism catalyzed by small pore Cu-CHA zeolites, neither the rate-determining step of the process nor the exact nature of the active sites under reaction conditions are clearly established. In this work, in situ EPR and IR techniques combined with DFT calculations are applied to the study of the oxidation half-cycle of the NH3-SCR-NOx reaction on Cu-SSZ-13 and Cu-SAPO-34 catalysts. EPR and IR spectroscopies unambiguously show that Cu+ is oxidized to Cu2+ at room temperature in the presence of the reaction mixture (NO, O-2, and NH3) or NO and O-2, producing adsorbed NO2, nitrites, and nitrates. Several pathways are proposed from DFT calculations to oxidize Cu+ cations placed in the plane of the 6R ring units of SSZ-13 and SAPO-34 to Cu2+, either by NO2 alone or by a mixture of NO and O-2, with activation energy barriers lower than 70 kJ mol(-1). The results reported here demonstrate that a reaction mechanism invoking the formation of nitrate/nitrite intermediates on copper cations attached to the zeolite framework can be operational in the low-temperature region (T < 350 degrees C). Moreover, different intermediates, nitrites versus nitrates, are preferentially stabilized, depending on the catalyst composition, silicoaluminophosphate vs aluminosilicate.This work was supported by the Spanish Government through "Severo Ochoa Program" (Nos. SEV 2012-0267; SEV-2016-0683), No. MAT2015-71261-R, and No. CTQ2015-68951-C3-1-R, and by the European Union through No. ERC-AdG-2014-671093 (SynCatMatch). Red Espanola de Supercomputacion (RES) and Centre de Calcul de la Universitat de Valencia are gratefully acknowledged for computational resources and technical support. R.M. acknowledges "La Caixa-Severo Ochoa" International PhD Fellowships (call 2015).Moreno-González, M.; Millán-Cabrera, R.; Concepción Heydorn, P.; Blasco Lanzuela, T.; Boronat Zaragoza, M. (2019). Spectroscopic Evidence and Density Functional Theory (DFT) Analysis of Low-Temperature Oxidation of Cu+ to Cu2+NOx in Cu-CHA Catalysts: Implications for the SCR-NOx Reaction Mechanism. ACS Catalysis. 9(4):2725-2738. https://doi.org/10.1021/acscatal.8b04717S272527389

    Study of propane oxidation on Cu-zeolite catalysts by in-situ EPR and IR spectroscopies

    Full text link
    Three Cu-zeolites with different structure, Cu-TNU-9, Cu-ITQ-2 and Cu Y have been tested as catalysts for propane oxidation reaction. The activity follows the trend: Cu-TNU-9 > Cu-ITQ-2 > Cu Y, and in situ electron paramagnetic resonance (EPR) and infrared (IR) spectroscopies have been used to ascertain the origin of their different behavior. The IR spectra show bands ascribed to the formation of COO&#8722; and CHO adsorbed on the Cu-zeolites as reaction intermediates in the oxidation of propane with an intensity that follows the same tendency that their oxidation activity. The EPR spectra of the three Cu-zeolites show that about 40 50% of total copper is present as isolated Cu2+ species, and heating under propane or propane oxygen mixture at 350 °C provokes the reduction of Cu2+ to Cu+ following the same trend that the oxidation activity, i.e., Cu-TNU-9 > Cu-ITQ-2 > Cu Y. Further analysis of the EPR spectra suggests that the reducibility of exchanged Cu2+ cations in the Cu-zeolites is determined by their accessibility to the propane molecules.The authors acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness through the Severo Ochoa program (SEV-2012-0267) as well as operating grants Consolider Ingenio Multicat (CSD-2009-00050) and MAT-20123856-0O2-01.Moreno González, M.; Blasco Lanzuela, T.; Góra-Marek, K.; Palomares Gimeno, AE.; Corma Canós, A. (2014). Study of propane oxidation on Cu-zeolite catalysts by in-situ EPR and IR spectroscopies. Catalysis Today. 227:123-129. https://doi.org/10.1016/j.cattod.2013.10.055S12312922

    AgY zeolite as catalyst for the selective catalytic oxidation of NH3

    Full text link
    [EN] Ag-exchanged Y zeolites (Si/Al = 2.5; Ag/Al = 0.30-0.95) have been tested in the NH3-SCO reaction, the most promising method for the elimination of ammonia emissions, and deeply characterized before and after reaction by using a variety of techniques (XRD, TEM, UV-Vis, Ag-109 NMR, XAS spectroscopies). The most active centres for the NH3-SCO reaction are Ag-0 nanoparticles (NPs) formed under reduction conditions and both activity and selectivity to N-2 increase with the silver loading. The Ag-0 NPs are dramatically modified under reaction conditions, being most of them dispersed resulting in small clusters and even atomically Ag+ cations, the latter accounting for around half silver atoms. The presence of water into the reaction feed promotes the dispersion and oxidation of silver nanoparticles, but the catalyst performance is only slightly affected. The results are fully consistent with the previously proposed i-SCR mechanism for NH3-SCO reaction on silver catalysts.Financial support by the Ministerio de Ciencia e Innovacion (MICINN) of Spain through the Severo Ochoa (SEV-2016-0683) , RTI2018-101784-B-I00, RTI2018-09639-A-I00 and InnovaXN-26-2019 projects is gratefully acknowledged. The authors also thank the Microscopy Service of the Universitat Politecnica de Valencia for its assistance in microscopy characterization (TEM and FESEM equipment preparation) . C. W. Lopes (Science without Borders Process no. 13191/13-6) thanks CAPES for a predoctoral fellowship and J. Martinez-Ortigosa (SEV-2012-0267-02) is grateful to Severo Ochoa Program for a predoctoral fellowship. The authors also want to thank the ALBA synchrotron and CL AE SS beamline staff for providing beamtime (proposal 2017092477) and for setting the beamline up to perform these studies.Martinez-Ortigosa, J.; Lopes, CW.; Agostini, G.; Palomares Gimeno, AE.; Blasco Lanzuela, T.; Rey Garcia, F. (2021). AgY zeolite as catalyst for the selective catalytic oxidation of NH3. Microporous and Mesoporous Materials. 323:1-14. https://doi.org/10.1016/j.micromeso.2021.111230S11432

    Modeling of EPR Parameters for Cu(II): Application to the Selective Reduction of NOx Catalyzed by Cu-Zeolites

    Full text link
    [EN] We present a combined theoretical-experimental study aiming to provide information about the location and coordination environment of the Cu2+ species involved in the selective reduction of NOx with NH3 catalyzed by Cu-zeolites. From the experimental side, we show and discuss the EPR spectra of the three molecular sieves most widely used as catalysts for the NH3-SCR-NOx reaction, namely Cu-SSZ-13, Cu-SAPO-34 and Cu-ZSM-5 both in their hydrated state and after dehydration. Then, we investigate the EPR spectra of Cu-SSZ-13 and Cu-SAPO-34 under the following conditions: (i) after NH3 adsorption, (ii) after NO addition, and (iii) in the presence of a NO/O-2 mixture. As regards the theoretical part, an exhaustive computational study has been performed that includes geometry optimization and calculation of the EPR parameters of all the relevant systems involved in the NH3-SCR-NOx reaction. The influence of local geometry and Al/Si distribution in the zeolite framework on the EPR parameters and the most probable location of Cu2+ in each material are analyzed, and assignations of the EPR signals obtained under different reaction conditions are discussed.This work has been supported by the Spanish Government through Severo Ochoa Program (SEV 2012-0267), MAT2015-71261-R and CTQ2015-68951-C3-1-R, and by the European Union through ERC-AdG-2014-671093 (SynCatMatch). Red Española de Supercomputación (RES) and Centre de Càlcul de la Universitat de Valencia are gratefully acknowledged for computational resources and technical support. E.F.V. thanks MINECO for her fellowship SVP-2013-068146.Fernández-Villanueva, E.; Moreno González, M.; Moliner Marin, M.; Blasco Lanzuela, T.; Boronat Zaragoza, M.; Corma Canós, A. (2018). Modeling of EPR Parameters for Cu(II): Application to the Selective Reduction of NOx Catalyzed by Cu-Zeolites. Topics in Catalysis. 61(9-11):810-832. https://doi.org/10.1007/s11244-018-0929-yS810832619-11Chen H-Y (2014) In: Nova I, Tronconi E (eds) Urea-SCR technology for deNOx after treatment of diesel exhausts. Springer, New YorkBrandenberger S, Krocher O, Tissler A, Althoff R (2008) Catal Rev Sci Eng 50:492–531Gao F, Kwak J, Szanyi J, Peden CHF (2013) Top Catal 56:1441–1459Deka U, Lezcano-González I, Weckhuysen BM, Beale AM (2013) ACS Catal 3:413–427Beale AM, Gao F, Lezcano-Gonzalez I, Peden CHF, Szanyi J (2015) Chem Soc Rev 44:7371–7405Zhang R, Liu N, Lei Z, Chen B (2016) Chem Rev 116:3658–3721Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF (2010) J Catal 275:187–190Bates SA, Verma A, Paolucci C, Parekh A, Anggara T, Schneider WF, Miller JT, Delgass WN, Ribeiro FH (2014) J Catal 312:87–97Beale AM, Lezcano-Gonzalez I, Slawinksi WA, Wragg DS (2016) Chem Commun 52:6170–6173Xue J, Wang X, Qi G, Wang J, Shen M, Li W (2013) J Catal 297:56–64Paolucci C, Khurana I, Parekh AA, Li SC, Shih AJ, Li H, Di Iorio JR, Albarracin-Caballero JD, Yezerets A, Miller JT, Delgass WN, Ribeiro FH, Schneider WF, Gounder R (2017) Science 357:898–903Gao F, Mei DH, Wang YL, Szanyi J, Peden CHF (2017) JACS 139:4935–4942Dedecek J, Kaucky D, Wichterlova B (2000) Microporous Mesoporous Mater 35–36:483–494Mentzen BF, Bergeret G (2007) J Phys Chem C 111:12512–12516Gao F, Walter ED, Karp EM, Luo J, Tonkyn RG, Kwak JH, Szanyi J, Peden CHF (2013) J Catal 300:20–29Godiksen A, Stappen FN, Vennestrom PNR, Giordanino F, Rasmussen SB, Lundegaard LF, Mossin S (2014) J Phys Chem C 118:23126–23138Godiksen A, Vennestrom PNR, Rasmussen S, Mossin S (2017) Top Catal 60:13–29Ames WM, Larsen SC (2010) J Phys Chem A 114:589–594Groothaert MH, Pierloot K, Delabie A, Schoonheydt RA (2003) Phys Chem Chem Phys 5:2135–2144Delabie A, Pierloot K, Groothaert MH, Weckhuysen BM, Shoonheydt RA (2002) Phys Chem Chem Phys 4:134–145Pierloot K, Delabie A, Groothaert MH, Shoonheydt RA (2001) Phys Chem Chem Phys 3:2174–2183Martinez-Franco R, Moliner M, Thogersen JR, Corma A (2013) ChemCatChem 5:3316–3323Moliner M, Franch C, Palomares E, Grill M, Corma A (2012) Chem Commun 48:8264–8266Martínez-Franco R, Moliner M, Concepcion P, Thogersen JR, Corma A (2014) J Catal 314:73–82Pietrzyk P, Podolska K, Sojka Z (2013) Electron Paramagn Reson 23:264–311Malkin E, Repisky M, Komorovsky S, Mach P, Malkina OL, Malkin VG (2011) J Chem Phys 134:044111-1–044111-8Hrobarik P, Repisky M, Komorovsky S, Hrobarikova V, Kaupp M (2011) Theoret Chem Acc129:715–725Gohr S, Hrobarik P, Repisky M, Komorovsky S, Ruud K, Kaupp M (2015) J Phys Chem A 119:12892–12905Neese F (2012) The ORCA program system. Wiley Interdiscip Rev 2:73–78Neese F (2005) J Chem Phys 122:034107-1–034107-13Neese F (2003) J Chem Phys 118:3939–3948Neese F (2001) J Chem Phys 115:11080–11096Kossmann S, Kirchner B, Neese F (2007) Mol Phys 105:2049–2071Ames WM, Larsen SC (2009) J Phys Chem A 113:4305–4312Zunger A, Perdew JP (1981) Phys Rev B 23:5048–5079King, Mebel, McGrady, Eisenstein, Macgregor, Pyykko, Hay, Bridgeman, Frenking, Deeth, Maseras, Poater, Kaltsoyannis, Cox, Stace (2003) Faraday Discuss 124:275–288Neese F (2009) Coord Chem Rev 253:526–563Neese F (2007) Electron Paramagn Reson 20:73–95Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249Blöchl P (1994) Phys Rev B 50:17953–17979Becke AD (1993) J Chem Phys 98:5648–5652Becke AD (1998) Phys Rev A 38:3098–3100Lee CT, Yang WT, Parr RGD (1998) Phys Rev B 37:785–789Heß BA, Marian CM, Wahlgren U, Gropen O (1996) Chem Phys Lett 251:365–371Neese F (2003) J Comput Chem 24:1740–1747Kutzelnigg W, Fleischer U, Schindler M (1990) NMR-basic principles and progress. Springer-Verlag, HeidelbergNeese F (2002) Inorg Chim Acta 337:181–192Sinnecker S, Slep LD, Bill E, Neese F (2005) Inorg Chem 44:2245–2254Gao F, Walter ED, Kollar M, Wang Y, Szanyi J, Peden CHF (2014) J Catal 319:1–14Conesa JC, Soria J (1979) J Chem Soc Faraday Trans 75:406–422de Almeida KJ, Rinkevicius Z, Hugosson HW, Ferreira AC, Agren H (2007) Chem Phys 332:176–187Zamadics M, Kevan L (1992) J Phys Chem 96:8989–8993Ma L, Cheng YS, Cavataio G, McCabe RW, Fu LX, Li JH (2013) Chem Eng J 225:323–330Kim YJ, Lee JK, Min KM, Hong SB, Nam IS, Cho BK (2014) J Catal 311:447–457Zamadics M, Chen XH, Kevan L (1992) J Phys Chem 96:2652–2657Zamadics M, Chen XH, Kevan L (1992) J Phys Chem 96:5488–5491Liu X, Wu X, Weng D, Si Z, Ran R (2017) Catal Today 281:596–604Wang J, Yu T, Wang XQ, Qi GS, Xue JJ, Shen MQ, Li W (2012) Appl. Catal. B 127:137–147Fickel DW, Lobo R (2010) J Phys Chem C 114:1633–1640Di Iorio JR, Gounder R (2016) Chem Mater 28:2236–2247Paolucci C, Parekh AA, Khurana I, Di Iorio JR, Li H, Albarracin Caballero JD, Shih AJ, Anggara T, Delgass WN, Miller JT, Ribeiro FH, Gounder R, Schneider WF (2016) J Am Chem Soc 138:6028–6048Godiksen A, Isaksen OI, Rasmussen SB, Vennestrom PNR, Mossin, S (2018) ChemCatChem 10:366–370Uzunova EL, Mikosch H, Hafner J (2009) J Mol Struct 912:88–94Kucherov AV, Karge HG, Schlogl R (1998) Microporous Mesoporous Mater 25:7–14Dedecek J, Sobalík Z, Tvaruzkova D, Kaucky D, Wichterlova B (1995) J Phys Chem 99:16327–16337Kucherov AV, Slinkin AA, Kondrat’ev DA, Bondarenko TN, Rubinstein AM, Minachev Kh M (1985) Zeolites 5:320–324Kucherov AV, Gerlock JL, Jen HW, Shelef M (1994) J Phys Chem 98:4892–4894Dedecek J, Balgova V, Pashkova V, Klein P, Wichterlova B (2012) Chem Mat 24:3231–3239Nachtigallova D, Nachtigall P, Sauer J (2001) Phys Chem Chem Phys 3:1552–1559Wichterlova B, Dedecek J, Sobalik Z (1998) In: Treacy MMJ, Marcus BK, Bisher ME, Higgins JB (eds.) Proceedings of the 12th International Zeolite Conference, Materials Research Society, Baltimore, USA, pp. 941–973Moreno-Gonzalez M, Hueso B, Boronat M, Blasco T, Corma A (2015) J Phys Chem Lett 6:1011–1017Lomachenko KA, Borfecchia E, Negri C, Berlier G, Lamberti C, Beato P, Falsig H, Bordiga S (2016) J Am Chem Soc 138:12025–12028Sojka Z, Che M, Giamello E (1997) J Phys Chem B 101:4831–4838Prestipino C, Berlier G, Xamena F, Spoto G, Bordiga S, Zecchina A, Palomino GT, Yamamoto T, Lamberti C (2002) Chem Phys Lett 363:389–396Umamaheswari V, Hartmann M, Poppl A (2005) J Phys Chem B 109:1537–1546Moreno-Gonzalez M, Palomares AE, Chiesa M, Boronat M, Giamello E, Blasco T (2017) ACS Catal 7:3501–3509Webb PA, Orr C (1997) Analytical methods in fine particle technology. Micrometrics, NorcrossYahiro H, Ohmori Y, Shiotani M (2005) Microporous Mesoporous Mater 83:165–171Il’ichev AN, Ukharsky AA, Matyshak VA (1996) Mendeleev Commun 6:57–59Matyshak VA, Il’ichev AN, Ukharsky AA, Korchak VN (1997) J Catal 171:245–254Kucherov AV, Gerlock GL, Jen HW, Shelef M (1996) Catal Today 27:79–84Giamello E, Murphy D, Magnacca G, Morterra C, Shioya Y, Nomura T, Anpo M (1992) J Catal 136:510–520Lei GD, Adelman BJ, Sárkány J, Sachtler WMH (1995) Appl Catal B 5:245–256Pietrzyk P, Gil B, Sojka Z (2007) Catal Today 126:103–111Konduru MV, Chuang SSC (2000) J Catal 196:271–286Janssens TVW, Falsig H, Lundegaard LF, Vennestrøm PNR, Rasmussen SB, Moses PG, Giordanino F, Borfecchia E, Lomachenko KA, Lamberti C, Bordiga S, Godiksen A, Mossin S, Beato P (2015) ACS Catal 5:2832–284

    The role of promoters on the catalytic performance of MxV2O5 bronzes for the selective partial oxidation of H2S

    Full text link
    [EN] Metal-containing vanadium oxide bronzes (MxV2O5; M= Cu, Ag and Ca) have been prepared, characterized (before and after reaction) by various physicochemical techniques, and tested in the partial oxidation of H2S. The catalysts were prepared hydrothermally at 175 ¿C (from gels containing M/V molar ratios of 0.17 or 0.33) and heat-treated at 500 ¿C/2 h in N2. The most effective catalysts, showing a sulfur selectivity greater than 95 % for a H2S conversion beyond 90 %, were those presenting vanadium oxide bronze (ß-Cu0.261V2O5 or Ag0.333V2O5) as the main crystalline phase. Cu- and Ag-containing vanadium oxide bronzes were stable under reaction conditions. For calcium containing materials (mainly presenting the Ca0.17V2O5 bronze phase), the formation of CaSO4 has been observed during the reaction, which resulted in a negative effect on both activity and selectivity. The nature of active and selective sites in this type of catalysts, as well as the role of promoters, are also discussed.The authors would like to acknowledge the Ministerio de Ciencia e Innovacion of Spain (TED2021-130756B-C31, TED2021-130756B-C32 and MAT2017-84118-C2-1-R projects) . Authors from ITQ also thank Project SEV-2016-0683 for supporting this research. A.A. acknowledges Severo Ochoa Excellence Program for his fellowship (BES-2017-080329) and Dr. Ferran Sabate from ITQ for his assistance with the EPR data treatment.Ruiz-Rodríguez, L.; De Arriba-Mateos, A.; Vidal Moya, JA.; Blasco Lanzuela, T.; Rodríguez-Castellón, E.; López Nieto, JM. (2022). The role of promoters on the catalytic performance of MxV2O5 bronzes for the selective partial oxidation of H2S. Applied Catalysis A General. 647:1-11. https://doi.org/10.1016/j.apcata.2022.11890011164

    Host-Guest and Guest-Guest Interactions of P- and N-Containing Structure Directing Agents Entrapped inside MFI-Type Zeolite by Multinuclear NMR Spectroscopy

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jpcc.9b05689".[EN] Highly crystalline pure silica MFI zeolites have been synthesized using tetraethylammonium (TEA), tetraethylphosphonium (TEP), or a mixture of both cations in different proportions as organic structure directing agents (OSDAs). The zeolites have been deeply characterized in order to get insight about the guest guest interactions involving the OSDAs and the guest host interactions involving the OSDAs and the inorganic framework, as well as the main features of the resulting materials. The results show that the average size of the MFI crystals decreases when TEP is present within the zeolite and that this cation is homogeneously distributed throughout the crystallites. The multinuclear NMR investigation (H-1, C-13, N-14, F-19, Si-29, P-31) indicates that TEP interacts with the zeolite host creating higher heterogeneity of the SiO4 crystallographic sites and a diminution on the mobility of fluorine atoms incorporated into the zeolite. Moreover, the presence of TEP influences the dynamics of the nitrogen atoms of the TEA molecules, and 2D heteronuclear correlation experiments give evidence on the spatial proximity of the TEA and TEP molecules in the MFI zeolites. Then, it is concluded that TEA and TEP are intimately mixed within the zeolite voids of the pure silica MFI samples synthesized by the dual template route.Financial support by the MINECO of Spain through the Severo Ochoa (SEV-2016-0683) and RTI2018-101784-B-I00 projects is gratefully acknowledged. The authors also thank the Microscopy Service of the Universitat Politecnica de Valencia for its assistance in microscopy characterization (FESEM equipment preparation). J.M.-O. (SEV-2012-0267-02) is grateful to the Severo Ochoa Program for a predoctoral fellowship.Martinez-Ortigosa, J.; Simancas-Coloma, J.; Vidal Moya, JA.; Gaveau, P.; Rey Garcia, F.; Alonso, B.; Blasco Lanzuela, T. (2019). Host-Guest and Guest-Guest Interactions of P- and N-Containing Structure Directing Agents Entrapped inside MFI-Type Zeolite by Multinuclear NMR Spectroscopy. The Journal of Physical Chemistry C. 123(36):22324-22334. https://doi.org/10.1021/acs.jpcc.9b05689S223242233412336Davis, M. E., & Lobo, R. F. (1992). Zeolite and molecular sieve synthesis. Chemistry of Materials, 4(4), 756-768. doi:10.1021/cm00022a005Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060iWilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R., & Flanigen, E. M. (1982). Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 104(4), 1146-1147. doi:10.1021/ja00368a062Liu, X., Yan, N., Wang, L., Ma, C., Guo, P., Tian, P., … Liu, Z. (2019). Landscape of AlPO-based structures and compositions in the database of zeolite structures. Microporous and Mesoporous Materials, 280, 105-115. doi:10.1016/j.micromeso.2019.01.047McCusker, L. B., Liebau, F., & Engelhardt, G. (2003). Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Microporous and Mesoporous Materials, 58(1), 3-13. doi:10.1016/s1387-1811(02)00545-0Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914uCorma, A., & Martinez, A. (1995). Zeolites and Zeotypes as catalysts. Advanced Materials, 7(2), 137-144. doi:10.1002/adma.19950070206Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406nBurton, A. W., & Zones, S. I. (2007). Organic Molecules in Zeolite Synthesis: Their Preparation and Structure-Directing Effects. Introduction to Zeolite Science and Practice, 137-179. doi:10.1016/s0167-2991(07)80793-2Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014Sastre, G., Vidal-Moya, J. A., Blasco, T., Rius, J., Jordá, J. L., Navarro, M. T., … Corma, A. (2002). Preferential Location of Ge Atoms in Polymorph C of Beta Zeolite (ITQ-17) and Their Structure-Directing Effect: A Computational, XRD, and NMR Spectroscopic Study. Angewandte Chemie International Edition, 41(24), 4722-4726. doi:10.1002/anie.200290028Chauhan, N. L., Das, J., Jasra, R. V., Parikh, P. A., & Murthy, Z. V. P. (2012). Synthesis of small-sized ZSM-5 zeolites employing mixed structure directing agents. Materials Letters, 74, 115-117. doi:10.1016/j.matlet.2012.01.094Mitani, E., Yamasaki, Y., Tsunoji, N., Sadakane, M., & Sano, T. (2018). Synthesis of phosphorus-modified AFX zeolite using a dual-template method with tetraethylphosphonium hydroxide as phosphorus modification agent. Microporous and Mesoporous Materials, 267, 192-197. doi:10.1016/j.micromeso.2018.03.033Blasco, T., Corma, A., Díaz-Cabañas, M. J., Rey, F., Vidal-Moya, J. A., & Zicovich-Wilson, C. M. (2002). Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. The Journal of Physical Chemistry B, 106(10), 2634-2642. doi:10.1021/jp013302bCamblor, M. A., Villaescusa, L. A., & Díaz‐Cabañas, M. J. (1999). Topics in Catalysis, 9(1/2), 59-76. doi:10.1023/a:1019154304344Koller, H., Wölker, A., Villaescusa, L. A., Díaz-Cabañas, M. J., Valencia, S., & Camblor, M. A. (1999). Five-Coordinate Silicon in High-Silica Zeolites. Journal of the American Chemical Society, 121(14), 3368-3376. doi:10.1021/ja9840549Koller, H., Wölker, A., Eckert, H., Panz, C., & Behrens, P. (1997). Five-Coordinate Silicon in Zeolites: Probing SiO4/2F− Sites in Nonasil and ZSM-5 with29Si Solid-State NMR Spectroscopy. Angewandte Chemie International Edition in English, 36(24), 2823-2825. doi:10.1002/anie.199728231Dědeček, J., Tabor, E., & Sklenak, S. (2018). Tuning the Aluminum Distribution in Zeolites to Increase their Performance in Acid-Catalyzed Reactions. ChemSusChem, 12(3), 556-576. doi:10.1002/cssc.201801959Li, C., Vidal-Moya, A., Miguel, P. J., Dedecek, J., Boronat, M., & Corma, A. (2018). Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis, 8(8), 7688-7697. doi:10.1021/acscatal.8b02112Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121Simancas, J., Simancas, R., Bereciartua, P. J., Jorda, J. L., Rey, F., Corma, A., … Mugnaioli, E. (2016). Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. Journal of the American Chemical Society, 138(32), 10116-10119. doi:10.1021/jacs.6b06394Yun, Y., Hernández, M., Wan, W., Zou, X., Jordá, J. L., Cantín, A., … Corma, A. (2015). The first zeolite with a tri-directional extra-large 14-ring pore system derived using a phosphonium-based organic molecule. Chemical Communications, 51(36), 7602-7605. doi:10.1039/c4cc10317cSonoda, T., Maruo, T., Yamasaki, Y., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2015). Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. Journal of Materials Chemistry A, 3(2), 857-865. doi:10.1039/c4ta05621cKakiuchi, Y., Tanigawa, T., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2019). Phosphorus modified small-pore zeolites and their catalytic performances in ethanol conversion and NH3-SCR reactions. Applied Catalysis A: General, 575, 204-213. doi:10.1016/j.apcata.2019.02.026Van der Bij, H. E., & Weckhuysen, B. M. (2015). Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis. Chemical Society Reviews, 44(20), 7406-7428. doi:10.1039/c5cs00109aBLASCO, T., CORMA, A., & MARTINEZTRIGUERO, J. (2006). Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. Journal of Catalysis, 237(2), 267-277. doi:10.1016/j.jcat.2005.11.011Liu, X., & Luo, Q. (2017). Solid State NMR Spectroscopy Studies of the Nature of Structure Direction of OSDAs in Pure-Silica Zeolites ZSM-5 and Beta. The Journal of Physical Chemistry C, 121(24), 13211-13217. doi:10.1021/acs.jpcc.7b03350Fyfe, C. A., & Brouwer, D. H. (2006). Optimization, Standardization, and Testing of a New NMR Method for the Determination of Zeolite Host−Organic Guest Crystal Structures. Journal of the American Chemical Society, 128(36), 11860-11871. doi:10.1021/ja060744yDib, E., Gimenez, A., Mineva, T., & Alonso, B. (2015). Preferential orientations of structure directing agents in zeolites. Dalton Transactions, 44(38), 16680-16683. doi:10.1039/c5dt02558cDib, E., Mineva, T., Gaveau, P., & Alonso, B. (2013). 14N solid-state NMR: a sensitive probe of the local order in zeolites. Physical Chemistry Chemical Physics, 15(42), 18349. doi:10.1039/c3cp51845kDib, E., Mineva, T., Gaveau, P., Véron, E., Sarou-Kanian, V., Fayon, F., & Alonso, B. (2017). Probing Disorder in Al-ZSM-5 Zeolites by 14N NMR Spectroscopy. The Journal of Physical Chemistry C, 121(29), 15831-15841. doi:10.1021/acs.jpcc.7b04861Tuel, A., Ben Taǎrit, Y., & Naccache, C. (1993). Characterization of TS-1 synthesized using mixtures of tetrabutyl and tetraethyl ammonium hydroxides. Zeolites, 13(6), 454-461. doi:10.1016/0144-2449(93)90120-rDing, J., Xue, T., Wu, H., & He, M. (2017). One-step post-synthesis treatment for preparing hydrothermally stable hierarchically porous ZSM-5. Chinese Journal of Catalysis, 38(1), 48-57. doi:10.1016/s1872-2067(16)62549-4Schmidt-Rohr, K., Clauss, J., & Spiess, H. W. (1992). Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules, 25(12), 3273-3277. doi:10.1021/ma00038a037Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., … Hoatson, G. (2001). Modelling one- and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry, 40(1), 70-76. doi:10.1002/mrc.984Chen, X., Yan, W., Cao, X., Yu, J., & Xu, R. (2009). Fabrication of silicalite-1 crystals with tunable aspect ratios by microwave-assisted solvothermal synthesis. Microporous and Mesoporous Materials, 119(1-3), 217-222. doi:10.1016/j.micromeso.2008.10.015Schmidt, J. E., Fu, D., Deem, M. W., & Weckhuysen, B. M. (2016). Template–Framework Interactions in Tetraethylammonium‐Directed Zeolite Synthesis. Angewandte Chemie International Edition, 55(52), 16044-16048. doi:10.1002/anie.201609053Baerlocher, Ch.; McCusker, L. B. Database of Zeolite Structures. http://www.iza-structure.org/databases/.Fyfe, C. A., Brouwer, D. H., Lewis, A. R., Villaescusa, L. A., & Morris, R. E. (2002). Combined Solid State NMR and X-ray Diffraction Investigation of the Local Structure of the Five-Coordinate Silicon in Fluoride-Containing As-Synthesized STF Zeolite. Journal of the American Chemical Society, 124(26), 7770-7778. doi:10.1021/ja012558sFyfe, C. A., Brouwer, D. H., Lewis, A. R., & Chézeau, J.-M. (2001). Location of the Fluoride Ion in Tetrapropylammonium Fluoride Silicalite-1 Determined by 1H/19F/29Si Triple Resonance CP, REDOR, and TEDOR NMR Experiments. Journal of the American Chemical Society, 123(28), 6882-6891. doi:10.1021/ja010532vBrunklaus, G., Koller, H., & Zones, S. I. (2016). Defect Models of As-Made High-Silica Zeolites: Clusters of Hydrogen-Bonds and Their Interaction with the Organic Structure-Directing Agents Determined from1H Double and Triple Quantum NMR Spectroscopy. Angewandte Chemie International Edition, 55(46), 14459-14463. doi:10.1002/anie.201607428Koller, H., Lobo, R. F., Burkett, S. L., & Davis, M. E. (1995). SiO-.cntdot. .cntdot. .cntdot.HOSi Hydrogen Bonds in As-Synthesized High-Silica Zeolites. The Journal of Physical Chemistry, 99(33), 12588-12596. doi:10.1021/j100033a036Dib, E., Grand, J., Mintova, S., & Fernandez, C. (2015). Structure-Directing Agent Governs the Location of Silanol Defects in Zeolites. Chemistry of Materials, 27(22), 7577-7579. doi:10.1021/acs.chemmater.5b03668Losch, P., Pinar, A. B., Willinger, M. G., Soukup, K., Chavan, S., Vincent, B., … Louis, B. (2017). H-ZSM-5 zeolite model crystals: Structure-diffusion-activity relationship in methanol-to-olefins catalysis. Journal of Catalysis, 345, 11-23. doi:10.1016/j.jcat.2016.11.005Dib, E., Alonso, B., & Mineva, T. (2014). DFT-D Study of 14N Nuclear Quadrupolar Interactions in Tetra-n-alkyl Ammonium Halide Crystals. The Journal of Physical Chemistry A, 118(19), 3525-3533. doi:10.1021/jp502858nMineva, T., Gaveau, P., Galarneau, A., Massiot, D., & Alonso, B. (2011). 14N: A Sensitive NMR Probe for the Study of Surfactant–Oxide Interfaces. The Journal of Physical Chemistry C, 115(39), 19293-19302. doi:10.1021/jp206567

    Partial oxidation of hydrogen sulphide to sulphur over vanadium oxides bronzes

    Full text link
    [EN] Me-containing V2O5 materials (Me =Ag, Cu, Ca and Na) were prepared hydrothermally (from aqueous gels containing V2O5/H2O2/MeClx mixtures, with Me/V ratios of 0.17). The samples were finally heattreated in air or in N2 atmosphere. The heat-treated samples have been characterized by several physicochemical techniques and tested in the partial oxidation of hydrogen sulfide. According to XRD, electron paramagnetic resonance and 51V NMR results, Ag0.35V2O5 and Na0.33V2O5 (or NaV6O15) bronzes with a minority presence of V2O5 were mainly obtained in the case of Ag- and Na-containing materials in samples both heat-treated in air or in N2 atmosphere. In the case of Cu- and Ca-containing samples, V2O5 was mainly observed in samples calcined in air. However, Cu0.26V2O5 and Ca0.17V2O5 bronzes, with the minority presence of V2O5, have been observed in Cu- and Ca-containing samples heat-treated in N2. On the other hand, the catalytic behavior strongly depends on the metal promoter. Thus catalysts presenting vanadium oxide bronzes, i.e. samples presenting Ag0.35V2O5, NaV6O15, Cu0.26V2O5 or Ca0.17V2O5 shows a catalytic activity during the partial oxidation of H2S to sulfur higher than that observed over pure V2O5 or over promoted catalysts presenting mainly V2O5 (i.e. Cu- or Ca-containing samples calcined in air). Moreover, some differences in the selectivity to sulfur were observed. A higher formation of SO2 at high reaction temperature has been favored over Ag0.35V2O5-containing catalyst. This different behavior between samples could be explained by the presence of metallic Ag on the surface of Ag0.35V2O5, which was detected by XRD. Also, higher formation of SO2 is favored in the case of catalyst heat-treated in N2, in which the presence of VO2, as minority, could have a role in combustion of sulfur. Accordingly, this work should be considered as a first approach to relate catalytic activity of the Me-containing vanadium oxide bronze (containing Ag, Cu, Ca and Na) for the selective oxidation of hydrogen sulfide.The authors would like to thank the DGICYT in Spain (Projects CTQ2012-37925-0O3-01 and CTQ2012-37925-0O3-03) for financial support.Soriano Rodríguez, MD.; Vidal Moya, JA.; Rodriguez Castellon, E.; Melo Faus, FV.; Blasco Lanzuela, T.; López Nieto, JM. (2015). Partial oxidation of hydrogen sulphide to sulphur over vanadium oxides bronzes. Catalysis Today. 259:237-244. https://doi.org/10.1016/j.cattod.2015.08.009S23724425

    Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15 silica

    Full text link
    [EN] Copper and cerium oxide bi-component materials with different Cu/Ce ratio were prepared using ordered SBA-15 silica as a support and compared with their bulk analogs. The samples were characterized by nitrogen physisorption, XRD, UV-Vis, FTIR, XPS, Raman spectroscopy and TPR with hydrogen. Cyclohexanol conversion was used as a catalytic test to obtain more information for the surface properties of the supported materials. The catalytic properties of the samples were studied in VOCs oxidation using toluene and ethyl acetate as probe molecules. A strong effect of mesoporous silica support and samples composition on the formation of catalytic sites was established. (C) 2012 Elsevier B.V. All rights reserved.Financial support of Bulgarian Academy of Science and National Scientific Fond of Ministry of Education Projects DTK 02/64 and ДНTC/Киtай 01/8, financial support from DGICYT in Spain (Project CTQ-2009-14495) and bilateral project Bulgarian-Spain Inter-academic Exchange Agreement (Project 2009BG0002) are acknowledged.Tsoncheva, T.; Issa, G.; Blasco Lanzuela, T.; Dimitrov, M.; Popova, M.; Hernández Morejudo, S.; Kovacheva, D.... (2013). Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15 silica. Applied Catalysis A General. 453:1-12. https://doi.org/10.1016/j.apcata.2012.12.007S11245

    Al2O3-Supported W-V-O bronzes catalysts for oxidative dehydrogenation of ethane

    Full text link
    [EN] Supported vanadium-containing hexagonal tungsten bronzes (HTBs) were prepared for the first time using a combination of a new soft synthetic procedure and fine-tuned heat treatments. The characterization of heat-treated samples indicates that both unsupported and Al2O3-supported materials present mainly vanadium-containing crystals with HTB structure smaller in the supported materials. Raman, diffuse reflectance UV-visible and EPR spectroscopic results suggest the presence of different V species depending on the V loading and catalyst composition. When used as catalysts for ethane oxidative dehydrogenation (ODH), selected supported vanadium-HTBs show selectivity to ethylene as high as 80% at ethane conversion of around 18%. These values position these new materials among the most active and selective catalysts so far reported in the literature for ethane ODH over supported vanadium oxide catalysts.The authors acknowledge the DGICYT in Spain (projects RTI2018-099668-B-C21 and SEV-2016-0683) for financial support. The research group of Prof. Fabrizio Cavani (University of Bologna, Italy) and Consorzio INSTM (Firenze) are gratefully acknowledged for a PhD grant to A. C. The authors also thank the Electron Microscopy Service of Universitat Politecnica de Valencia for its support.Benomar, S.; Chieregato, A.; Masso, A.; Soriano Rodríguez, MD.; Vidal Moya, JA.; Blasco Lanzuela, T.; Issaadi, R.... (2020). Al2O3-Supported W-V-O bronzes catalysts for oxidative dehydrogenation of ethane. Catalysis Science & Technology. 10(23):8064-8076. https://doi.org/10.1039/d0cy01220cS806480761023GUO, J.-D., & WHITTINGHAM, M. S. (1993). TUNGSTEN OXIDES AND BRONZES: SYNTHESIS, DIFFUSION AND REACTIVITY. International Journal of Modern Physics B, 07(23n24), 4145-4164. doi:10.1142/s0217979293003607Whittingham, M. S., Guo, J.-D., Chen, R., Chirayil, T., Janauer, G., & Zavalij, P. (1995). The hydrothermal synthesis of new oxide materials. Solid State Ionics, 75, 257-268. doi:10.1016/0167-2738(94)00220-mChen, J., Wang, H., Deng, J., Xu, C., & Wang, Y. (2018). Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor. Journal of Materials Chemistry A, 6(19), 8986-8991. doi:10.1039/c8ta01323cBartha, L., Kiss, A. B., & Szalay, T. (1995). Chemistry of tungsten oxide bronzes. International Journal of Refractory Metals and Hard Materials, 13(1-3), 77-91. doi:10.1016/0263-4368(94)00031-xTilley, R. J. D. (1995). The crystal chemistry of the higher tungsten oxides. International Journal of Refractory Metals and Hard Materials, 13(1-3), 93-109. doi:10.1016/0263-4368(95)00004-6Michailovski, A., Krumeich, F., & Patzke, G. R. (2004). Hierarchical Growth of Mixed Ammonium Molybdenum/Tungsten Bronze Nanorods. Chemistry of Materials, 16(8), 1433-1440. doi:10.1021/cm0311731Quan, H., Gao, Y., & Wang, W. (2020). Tungsten oxide-based visible light-driven photocatalysts: crystal and electronic structures and strategies for photocatalytic efficiency enhancement. Inorganic Chemistry Frontiers, 7(4), 817-838. doi:10.1039/c9qi01516gMichailovski, A., & Patzke, G. R. (2006). Hydrothermal Synthesis of Molybdenum Oxide Based Materials: Strategy and Structural Chemistry. Chemistry - A European Journal, 12(36), 9122-9134. doi:10.1002/chem.200600977Michailovski, A., Kiebach, R., Bensch, W., Grunwaldt, J.-D., Baiker, A., Komarneni, S., & Patzke, G. R. (2006). Morphological and Kinetic Studies on Hexagonal Tungstates. Chemistry of Materials, 19(2), 185-197. doi:10.1021/cm061020oKiebach, R., Pienack, N., Bensch, W., Grunwaldt, J.-D., Michailovski, A., Baiker, A., … Patzke, G. R. (2008). Hydrothermal Formation of W/Mo-Oxides: A Multidisciplinary Study of Growth and Shape. Chemistry of Materials, 20(9), 3022-3033. doi:10.1021/cm7028036Magnéli, A., Blomberg, B., Reio, L., Saluste, E., Stjernholm, R., & Ehrensvärd, G. (1951). Contribution to the Knowledge of the Alkali Tungsten Bronzes. Acta Chemica Scandinavica, 5, 372-378. doi:10.3891/acta.chem.scand.05-0372C. N. R. Rao and K.Biswas , Soft Chemistry Routes, in Essentials of Inorganic Materials Synthesis , ed. C. N. R. Rao and K. Biswas , John Wiley & Sons, Inc. , New Jersey , 2015 , ch. 10Li, F., Qian, Y., & Stein, A. (2010). Template-Directed Synthesis and Organization of Shaped Oxide/Phosphate Nanoparticles. Chemistry of Materials, 22(10), 3226-3235. doi:10.1021/cm100478zGopalakrishnan, J. (1995). Chimie Douce Approaches to the Synthesis of Metastable Oxide Materials. Chemistry of Materials, 7(7), 1265-1275. doi:10.1021/cm00055a001Stevenson, S., & Sermon, P. A. (1987). Promotion of nitrogen and hydrogen chemisorption and ammonia synthesis on alumina-supported hexagonal tungsten bronze, Kx WO3. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83(7), 2175. doi:10.1039/f19878302175Szilágyi, I. M., Hange, F., Madarász, J., & Pokol, G. (2006). In situ HT-XRD Study on the Formation of Hexagonal Ammonium Tungsten Bronze by Partial Reduction of Ammonium Paratungstate Tetrahydrate. European Journal of Inorganic Chemistry, 2006(17), 3413-3418. doi:10.1002/ejic.200500875Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622eGarcía-González, E., Soriano, M. D., Urones-Garrote, E., & López Nieto, J. M. (2014). On the origin of the spontaneous formation of nanocavities in hexagonal bronzes (W,V)O3. Dalton Trans., 43(39), 14644-14652. doi:10.1039/c4dt01465kChieregato, A., López Nieto, J. M., & Cavani, F. (2015). Mixed-oxide catalysts with vanadium as the key element for gas-phase reactions. Coordination Chemistry Reviews, 301-302, 3-23. doi:10.1016/j.ccr.2014.12.003Cavani, F., Ballarini, N., & Cericola, A. (2007). Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catalysis Today, 127(1-4), 113-131. doi:10.1016/j.cattod.2007.05.009Gärtner, C. A., van Veen, A. C., & Lercher, J. A. (2013). Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects. ChemCatChem, 5(11), 3196-3217. doi:10.1002/cctc.201200966Kube, P., Frank, B., Wrabetz, S., Kröhnert, J., Hävecker, M., Velasco-Vélez, J., … Trunschke, A. (2017). Functional Analysis of Catalysts for Lower Alkane Oxidation. ChemCatChem, 9(4), 573-585. doi:10.1002/cctc.201601194Rozanska, X., Fortrie, R., & Sauer, J. (2014). Size-Dependent Catalytic Activity of Supported Vanadium Oxide Species: Oxidative Dehydrogenation of Propane. Journal of the American Chemical Society, 136(21), 7751-7761. doi:10.1021/ja503130zDinse, A., Schomäcker, R., & Bell, A. T. (2009). The role of lattice oxygen in the oxidative dehydrogenation of ethane on alumina-supported vanadium oxide. Physical Chemistry Chemical Physics, 11(29), 6119. doi:10.1039/b821131kBlasco, T., Galli, A., López Nieto, J. M., & Trifiró, F. (1997). Oxidative Dehydrogenation of Ethane andn-Butane on VOx/Al2O3Catalysts. Journal of Catalysis, 169(1), 203-211. doi:10.1006/jcat.1997.1673Argyle, M. D., Chen, K., Bell, A. T., & Iglesia, E. (2002). Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia. Journal of Catalysis, 208(1), 139-149. doi:10.1006/jcat.2002.3570Al-Ghamdi, S., Volpe, M., Hossain, M. M., & de Lasa, H. (2013). VOx/c-Al2O3 catalyst for oxidative dehydrogenation of ethane to ethylene: Desorption kinetics and catalytic activity. Applied Catalysis A: General, 450, 120-130. doi:10.1016/j.apcata.2012.10.007SOLSONA, B., VAZQUEZ, M., IVARS, F., DEJOZ, A., CONCEPCION, P., & LOPEZNIETO, J. (2007). Selective oxidation of propane and ethane on diluted Mo–V–Nb–Te mixed-oxide catalysts. Journal of Catalysis, 252(2), 271-280. doi:10.1016/j.jcat.2007.09.019Botella, P., Dejoz, A., Abello, M. C., Vázquez, M. I., Arrúa, L., & López Nieto, J. M. (2009). Selective oxidation of ethane: Developing an orthorhombic phase in Mo–V–X (X=Nb, Sb, Te) mixed oxides. Catalysis Today, 142(3-4), 272-277. doi:10.1016/j.cattod.2008.09.016Gaffney, A. M., & Mason, O. M. (2017). Ethylene production via Oxidative Dehydrogenation of Ethane using M1 catalyst. Catalysis Today, 285, 159-165. doi:10.1016/j.cattod.2017.01.020HERACLEOUS, E., & LEMONIDOU, A. (2006). Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: Characterization and catalytic performance. Journal of Catalysis, 237(1), 162-174. doi:10.1016/j.jcat.2005.11.002Ipsakis, D., Heracleous, E., Silvester, L., Bukur, D. B., & Lemonidou, A. A. (2017). Reduction and oxidation kinetic modeling of NiO-based oxygen transfer materials. Chemical Engineering Journal, 308, 840-852. doi:10.1016/j.cej.2016.09.114Solsona, B., Concepción, P., López Nieto, J. M., Dejoz, A., Cecilia, J. A., Agouram, S., … Rodríguez Castellón, E. (2016). Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane. Catalysis Science & Technology, 6(10), 3419-3429. doi:10.1039/c5cy01811kZhu, H., Rosenfeld, D. C., Harb, M., Anjum, D. H., Hedhili, M. N., Ould-Chikh, S., & Basset, J.-M. (2016). Ni–M–O (M = Sn, Ti, W) Catalysts Prepared by a Dry Mixing Method for Oxidative Dehydrogenation of Ethane. ACS Catalysis, 6(5), 2852-2866. doi:10.1021/acscatal.6b00044Carrero, C. A., Burt, S. P., Huang, F., Venegas, J. M., Love, A. M., Mueller, P., … Hermans, I. (2017). Supported two- and three-dimensional vanadium oxide species on the surface of β-SiC. Catalysis Science & Technology, 7(17), 3707-3714. doi:10.1039/c7cy01036bLove, A. M., Carrero, C. A., Chieregato, A., Grant, J. T., Conrad, S., Verel, R., & Hermans, I. (2016). Elucidation of Anchoring and Restructuring Steps during Synthesis of Silica-Supported Vanadium Oxide Catalysts. Chemistry of Materials, 28(15), 5495-5504. doi:10.1021/acs.chemmater.6b02118Grant, J. T., Carrero, C. A., Love, A. M., Verel, R., & Hermans, I. (2015). Enhanced Two-Dimensional Dispersion of Group V Metal Oxides on Silica. ACS Catalysis, 5(10), 5787-5793. doi:10.1021/acscatal.5b01679Barman, S., Maity, N., Bhatte, K., Ould-Chikh, S., Dachwald, O., Haeßner, C., … Basset, J.-M. (2016). Single-Site VOx Moieties Generated on Silica by Surface Organometallic Chemistry: A Way To Enhance the Catalytic Activity in the Oxidative Dehydrogenation of Propane. ACS Catalysis, 6(9), 5908-5921. doi:10.1021/acscatal.6b01263Maffia, G. J., Gaffney, A. M., & Mason, O. M. (2016). Techno-Economic Analysis of Oxidative Dehydrogenation Options. Topics in Catalysis, 59(17-18), 1573-1579. doi:10.1007/s11244-016-0677-9Sanati, M., & Andersson, A. (1990). Ammoxtoation of toluene over TiO2(B)-supported vanadium oxide catalysts. Journal of Molecular Catalysis, 59(2), 233-255. doi:10.1016/0304-5102(90)85055-mSoriano, M. D., Chieregato, A., Zamora, S., Basile, F., Cavani, F., & López Nieto, J. M. (2015). Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols: Glycerol and Methanol. Topics in Catalysis, 59(2-4), 178-185. doi:10.1007/s11244-015-0440-7SOLSONA, B., DEJOZ, A., GARCIA, T., CONCEPCION, P., NIETO, J., VAZQUEZ, M., & NAVARRO, M. (2006). Molybdenum–vanadium supported on mesoporous alumina catalysts for the oxidative dehydrogenation of ethane. Catalysis Today, 117(1-3), 228-233. doi:10.1016/j.cattod.2006.05.025Spałek, T., Pietrzyk, P., & Sojka, Z. (2004). Application of the Genetic Algorithm Joint with the Powell Method to Nonlinear Least-Squares Fitting of Powder EPR Spectra. Journal of Chemical Information and Modeling, 45(1), 18-29. doi:10.1021/ci049863sPietrzyk, P., & Góra-Marek, K. (2016). Paramagnetic dioxovanadium(iv) molecules inside the channels of zeolite BEA – EPR screening of VO2 reactivity toward small gas-phase molecules. Physical Chemistry Chemical Physics, 18(14), 9490-9496. doi:10.1039/c6cp01046fShaikh, S. F., Kalanur, S. S., Mane, R. S., & Joo, O.-S. (2013). Monoclinic WO3 nanorods–rutile TiO2 nanoparticles core–shell interface for efficient DSSCs. Dalton Transactions, 42(28), 10085. doi:10.1039/c3dt50728aSzilágyi, I. M., Madarász, J., Pokol, G., Király, P., Tárkányi, G., Saukko, S., … Varga-Josepovits, K. (2008). Stability and Controlled Composition of Hexagonal WO3. Chemistry of Materials, 20(12), 4116-4125. doi:10.1021/cm800668xCHAN, S. (1985). Laser Raman characterization of tungsten oxide supported on alumina: Influence of calcination temperatures. Journal of Catalysis, 92(1), 1-10. doi:10.1016/0021-9517(85)90231-3G. Deo , F. D.Hardcastle , M.Richards , A. M.Hirt and I. E.Wachs , ACS Symposium Series, in Novel Materials in Heterogeneous Catalysis , ed. R. Baker , et al. , American Chemical Society , Washington, DC , 1990 , p. 317França, M. C. K., da Silva San Gil, R. A., & Eon, J.-G. (2003). Alumina-supported catalysts for propane oxidative dehydrogenation from mixed VXM(6−X)O19n− (M=W, Mo) hexametalate precursors. Catalysis Today, 78(1-4), 105-115. doi:10.1016/s0920-5861(02)00302-4Catana, G., Rao, R. R., Weckhuysen, B. M., Van Der Voort, P., Vansant, E., & Schoonheydt, R. A. (1998). Supported Vanadium Oxide Catalysts: Quantitative Spectroscopy, Preferential Adsorption of V4+/5+, and Al2O3 Coating of Zeolite Y. The Journal of Physical Chemistry B, 102(41), 8005-8012. doi:10.1021/jp981482sBrückner, A. (2010). In situ electron paramagnetic resonance: a unique tool for analyzing structure–reactivity relationships in heterogeneous catalysis. Chemical Society Reviews, 39(12), 4673. doi:10.1039/b919541fBrückner, A. (2006). Spin–spin exchange in vanadium-containing catalysts studied by in situ-EPR: a sensitive monitor for disorder-related activity. Topics in Catalysis, 38(1-3), 133-139. doi:10.1007/s11244-006-0078-6Strassberger, Z., Ramos-Fernandez, E. V., Boonstra, A., Jorna, R., Tanase, S., & Rothenberg, G. (2013). Synthesis, characterization and testing of a new V2O5/Al2O3–MgO catalyst for butane dehydrogenation and limonene oxidation. Dalton Transactions, 42(15), 5546. doi:10.1039/c3dt32954bKompio, P. G. W. A., Brückner, A., Hipler, F., Auer, G., Löffler, E., & Grünert, W. (2012). A new view on the relations between tungsten and vanadium in V2O5WO3/TiO2 catalysts for the selective reduction of NO with NH3. Journal of Catalysis, 286, 237-247. doi:10.1016/j.jcat.2011.11.008Concepción, P., Knözinger, H., López Nieto, J. M., & Martínez-Arias, A. (2002). Characterization of Supported Vanadium Oxide Catalysts. Nature of the Vanadium Species in Reduced Catalysts. The Journal of Physical Chemistry B, 106(10), 2574-2582. doi:10.1021/jp010918sSilversmit, G., Depla, D., Poelman, H., Marin, G. B., & De Gryse, R. (2004). Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). Journal of Electron Spectroscopy and Related Phenomena, 135(2-3), 167-175. doi:10.1016/j.elspec.2004.03.004Suchorski, Y., Rihko-Struckmann, L., Klose, F., Ye, Y., Alandjiyska, M., Sundmacher, K., & Weiss, H. (2005). Evolution of oxidation states in vanadium-based catalysts under conventional XPS conditions. Applied Surface Science, 249(1-4), 231-237. doi:10.1016/j.apsusc.2004.11.083KLOSE, F., WOLFF, T., LORENZ, H., SEIDELMORGENSTERN, A., SUCHORSKI, Y., PIORKOWSKA, M., & WEISS, H. (2007). Active species on γ-alumina-supported vanadia catalysts: Nature and reducibility. Journal of Catalysis, 247(2), 176-193. doi:10.1016/j.jcat.2007.01.013Hess, C., Tzolova-Müller, G., & Herbert, R. (2007). The Influence of Water on the Dispersion of Vanadia Supported on Silica SBA-15:  A Combined XPS and Raman Study. The Journal of Physical Chemistry C, 111(26), 9471-9479. doi:10.1021/jp0713920Liu, Y., Shrestha, S., & Mustain, W. E. (2012). Synthesis of Nanosize Tungsten Oxide and Its Evaluation as an Electrocatalyst Support for Oxygen Reduction in Acid Media. ACS Catalysis, 2(3), 456-463. doi:10.1021/cs200657wNieto, J. M. L. (2006). The selective oxidative activation of light alkanes. From supported vanadia to multicomponent bulk V-containing catalysts. Topics in Catalysis, 41(1-4), 3-15. doi:10.1007/s11244-006-0088-

    Use of Alkylarsonium Directing Agents for the Synthesis and Study of Zeolites

    Get PDF
    This is the peer reviewed version of the following article: Chem. Eur. J. 2019, 25, 16390 16396 , which has been published in final form at https://doi.org/10.1002/chem.201904043. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Expanding the previously known family of -onium (ammonium, phosphonium, and sulfonium) organic structure-directing agents (OSDAs) for the synthesis of zeolite MFI, a new member, the arsonium cation, is used for the first time. The new group of tetraalkylarsonium cations has allowed the synthesis of the zeolite ZSM-5 with several different chemical compositions, opening a route for the synthesis of zeolites with a new series of OSDA. Moreover, the use of As replacing N in the OSDA allows the introduction of probe atoms that facilitate the study of these molecules by powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (MAS NMR), and X-ray absorption spectroscopy (XAS). Finally, the influence of trivalent elements such as B, Al, or Ga isomorphically replacing Si atoms in the framework structure and its interaction with the As species has been studied. The suitability of the tetraalkylarsonium cation for carrying out the crystallization of zeolites is demonstrated along with the benefit of the presence of As atoms in the occluded OSDA, which allows its advanced characterization as well as the study of its evolution during OSDA removal by thermal treatments.Program Severo Ochoa SEV-2016-0683 and Maria de Maeztu MDM-2015-0538 are gratefully acknowledged. S.S-F. thanks MEC for his Severo Ochoa Grant SPV-2013-067884, P.O.-B. and G.M.E. thank MEC for his Ramon y Cajal contracts (RYC-2014-16620 and RYC-2013-14386). The authors thank the financial support by the Spanish Government (RTI2018-096399-A-I00, RTI2018-101784-B-I00 and CTQ2017-89528-P) and the Generalitat Valeciana (PROMETEO/2017/066). The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. We gratefully acknowledge ESRF synchrotron for allocating beamtime (proposal CH-5193), the Italian CRG beam-line at ESRF (LISA-BM08), and Alessandro Puri for the help and technical support during our experiment. C.W.L. (Science without Frontiers-Process no. 13191/13-6) thanks CAPES for a predoctoral fellowship.Saez-Ferre, S.; Lopes, CW.; Simancas-Coloma, J.; Vidal Moya, JA.; Blasco Lanzuela, T.; Agostini, G.; Mínguez Espallargas, G.... (2019). Use of Alkylarsonium Directing Agents for the Synthesis and Study of Zeolites. Chemistry - A European Journal. 25(71):16390-16396. https://doi.org/10.1002/chem.201904043S16390163962571Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016Jiang, J., Yu, J., & Corma, A. (2010). Zeolithe mit sehr großen Poren als Bindeglied zwischen mikro- und mesoporösen Strukturen. Angewandte Chemie, 122(18), 3186-3212. doi:10.1002/ange.200904016Shayib, R. M., George, N. C., Seshadri, R., Burton, A. W., Zones, S. I., & Chmelka, B. F. (2011). Structure-Directing Roles and Interactions of Fluoride and Organocations with Siliceous Zeolite Frameworks. Journal of the American Chemical Society, 133(46), 18728-18741. doi:10.1021/ja205164uInternational Zeolite Association Website http://www.iza-online.org/(accessed October 4 2018).Pinar, A. B., McCusker, L. B., Baerlocher, C., Hwang, S.-J., Xie, D., Benin, A. I., & Zones, S. I. (2016). Synthesis and structural characterization of Zn-containing DAF-1. New Journal of Chemistry, 40(5), 4160-4166. doi:10.1039/c5nj02897cDorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents:  Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206oCorma, A., Diaz-Cabanas, M. J., Jorda, J. L., Rey, F., Sastre, G., & Strohmaier, K. G. (2008). A Zeolitic Structure (ITQ-34) with Connected 9- and 10-Ring Channels Obtained with Phosphonium Cations as Structure Directing Agents. Journal of the American Chemical Society, 130(49), 16482-16483. doi:10.1021/ja806903cCorma, A., Diaz-Cabanas, M. J., Jiang, J., Afeworki, M., Dorset, D. L., Soled, S. L., & Strohmaier, K. G. (2010). Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proceedings of the National Academy of Sciences, 107(32), 13997-14002. doi:10.1073/pnas.1003009107Hernández-Rodríguez, M., Jordá, J. L., Rey, F., & Corma, A. (2012). Synthesis and Structure Determination of a New Microporous Zeolite with Large Cavities Connected by Small Pores. Journal of the American Chemical Society, 134(32), 13232-13235. doi:10.1021/ja306013kSimancas, J., Simancas, R., Bereciartua, P. J., Jorda, J. L., Rey, F., Corma, A., … Mugnaioli, E. (2016). Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. Journal of the American Chemical Society, 138(32), 10116-10119. doi:10.1021/jacs.6b06394Jo, C., Lee, S., Cho, S. J., & Ryoo, R. (2015). Synthesis of Silicate Zeolite Analogues Using Organic Sulfonium Compounds as Structure-Directing Agents. Angewandte Chemie International Edition, 54(43), 12805-12808. doi:10.1002/anie.201506678Jo, C., Lee, S., Cho, S. J., & Ryoo, R. (2015). Synthesis of Silicate Zeolite Analogues Using Organic Sulfonium Compounds as Structure-Directing Agents. Angewandte Chemie, 127(43), 12996-12999. doi:10.1002/ange.201506678Lee, S., Jo, C., Park, H., Kim, J., & Ryoo, R. (2019). Sulfonium-based organic structure-directing agents for microporous aluminophosphate synthesis. Microporous and Mesoporous Materials, 280, 75-81. doi:10.1016/j.micromeso.2019.01.048Fattorini, D., Notti, A., & Regoli, F. (2006). Characterization of arsenic content in marine organisms from temperate, tropical, and polar environments. Chemistry and Ecology, 22(5), 405-414. doi:10.1080/02757540600917328Bonilla, G., Díaz, I., Tsapatsis, M., Jeong, H.-K., Lee, Y., & Vlachos, D. G. (2004). Zeolite (MFI) Crystal Morphology Control Using Organic Structure-Directing Agents. Chemistry of Materials, 16(26), 5697-5705. doi:10.1021/cm048854wVan Koningsveld, H., van Bekkum, H., & Jansen, J. C. (1987). On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy. Acta Crystallographica Section B Structural Science, 43(2), 127-132. doi:10.1107/s0108768187098173Fyfe, C. A., Brouwer, D. H., Lewis, A. R., & Chézeau, J.-M. (2001). Location of the Fluoride Ion in Tetrapropylammonium Fluoride Silicalite-1 Determined by1H/19F/29Si Triple Resonance CP, REDOR, and TEDOR NMR Experiments. Journal of the American Chemical Society, 123(28), 6882-6891. doi:10.1021/ja010532vBalimann, G., & Pregosin, P. . (1977). Arsenic-75 nuclear magnetic resonance. A study of some arsenic salts. Journal of Magnetic Resonance (1969), 26(2), 283-289. doi:10.1016/0022-2364(77)90174-3Klinowski, J. (1991). Solid-state NMR studies of molecular sieve catalysts. Chemical Reviews, 91(7), 1459-1479. doi:10.1021/cr00007a010Canche-Tello, J., Vargas, M. C., Hérnandez-Cobos, J., Ortega-Blake, I., Leclercq, A., Solari, P. L., … Mustre de Leon, J. (2015). X-ray Accelerated Photo-Oxidation of As(III) in Solution. The Journal of Physical Chemistry A, 119(12), 2829-2833. doi:10.1021/jp510596pArai, Y., Elzinga, E. J., & Sparks, D. L. (2001). X-ray Absorption Spectroscopic Investigation of Arsenite and Arsenate Adsorption at the Aluminum Oxide–Water Interface. Journal of Colloid and Interface Science, 235(1), 80-88. doi:10.1006/jcis.2000.7249Farquhar, M. L., Charnock, J. M., Livens, F. R., & Vaughan, D. J. (2002). Mechanisms of Arsenic Uptake from Aqueous Solution by Interaction with Goethite, Lepidocrocite, Mackinawite, and Pyrite:  An X-ray Absorption Spectroscopy Study. Environmental Science & Technology, 36(8), 1757-1762. doi:10.1021/es010216gMorin, G., Ona-Nguema, G., Wang, Y., Menguy, N., Juillot, F., Proux, O., … Brown Jr., G. E. (2008). Extended X-ray Absorption Fine Structure Analysis of Arsenite and Arsenate Adsorption on Maghemite. Environmental Science & Technology, 42(7), 2361-2366. doi:10.1021/es072057sRamírez-Solís, A., Mukopadhyay, R., Rosen, B. P., & Stemmler, T. L. (2004). Experimental and Theoretical Characterization of Arsenite in Water:  Insights into the Coordination Environment of As−O. Inorganic Chemistry, 43(9), 2954-2959. doi:10.1021/ic0351592Prieto, C., Blasco, T., Camblor, M., & Pérez-Pariente, J. (2000). Characterization of Ga-substituted zeolite Beta by X-ray absorption spectroscopy. Journal of Materials Chemistry, 10(6), 1383-1387. doi:10.1039/b001643hLamberti, C., Turnes Palomino, G., Bordiga, S., Zecchina, A., Spanò, G., & Otero Areán, C. (1999). Catalysis Letters, 63(3/4), 213-216. doi:10.1023/a:1019025206662Axon, S. A., Huddersman, K., & Klinowski, J. (1990). Gallium EXAFS and solid-state NMR studies of Ga-substituted MFI-type zeolites. Chemical Physics Letters, 172(5), 398-404. doi:10.1016/s0009-2614(90)87133-
    corecore