9 research outputs found

    Optimization of laser processes in n+Emitter formation for c-Si solar cells

    Get PDF
    Punctual phosphorus diffused emitters were achieved by laser patterning phosphorus doped a-SiCx:H films deposited by PECVD as a doping source. Two different lasers at wavelengths of 1064 nm and 532 nm were used. Phosphorus diffusion was confirmed by Secondary Ion Mass Spectroscopy. We explored the effect of pulse energy and number of pulses per diffused point. The results show that a fine tune of the energy pulse is critical while the number of pulses has minor effects. Scanning Electron Microscopy (SEM) pictures and optical profilometry showed a laser affected area where the c-Si is melted, ejected and solidified quickly again. Typically, the diameter of the affected area for 1064 nm laser is between two and four times greater than for 532 nm laser. Optimum parameters for both lasers were determined to obtain best J-V curves nearly to ideal diode behavior. Comparing best J-V results, lower emitter saturation current density (Jo) and contact resistance are obtained with 532 nm laser. The improvement in Jo can be related mainly to the smaller affected areas observed by SEM while lower contact resistance can be attributed to that 532 nm laser has a more superficial action resulting in higher phosphorus concentration at the surface. The expected open voltage circuit for finished solar cells using these emitters is in the range of 640 mV for 532 nm laser and 620 mV for 1064 nm one.Postprint (published version

    N-type emitters passivation through antireflective phosphorus doped a-SiCxNy:H(n) stacks

    Get PDF
    This paper studies the passivation of industrially textured deep silicon emitters using amorphous silicon carbonitride layers in stack configuration, deposited by plasma enhanced chemical vapor deposition. With this technique, emitter saturation current density can be decreased to values around 250 fA middot cm-2. As a consequence, open circuit voltages can be increased 25 mV achieving values around 640 mV.Postprint (published version

    Optimisation de l'implantation ionique et du recuit thermique pour SiC

    Get PDF
    Consultable des del TDXTĂ­tol obtingut de la portada digitalitzad

    Development of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD

    No full text
    In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances (Âżc ~ 10 mO cm2) have been obtained on 2.8 O cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.Peer Reviewe

    Optimization of laser processes in n+Emitter formation for c-Si solar cells

    No full text
    Punctual phosphorus diffused emitters were achieved by laser patterning phosphorus doped a-SiCx:H films deposited by PECVD as a doping source. Two different lasers at wavelengths of 1064 nm and 532 nm were used. Phosphorus diffusion was confirmed by Secondary Ion Mass Spectroscopy. We explored the effect of pulse energy and number of pulses per diffused point. The results show that a fine tune of the energy pulse is critical while the number of pulses has minor effects. Scanning Electron Microscopy (SEM) pictures and optical profilometry showed a laser affected area where the c-Si is melted, ejected and solidified quickly again. Typically, the diameter of the affected area for 1064 nm laser is between two and four times greater than for 532 nm laser. Optimum parameters for both lasers were determined to obtain best J-V curves nearly to ideal diode behavior. Comparing best J-V results, lower emitter saturation current density (Jo) and contact resistance are obtained with 532 nm laser. The improvement in Jo can be related mainly to the smaller affected areas observed by SEM while lower contact resistance can be attributed to that 532 nm laser has a more superficial action resulting in higher phosphorus concentration at the surface. The expected open voltage circuit for finished solar cells using these emitters is in the range of 640 mV for 532 nm laser and 620 mV for 1064 nm one

    Theoretical considerations in algorithm design

    No full text
    Paper in Proc. NATO Advanced Study Inst., Ilkley (GB), 30 Mar - 12 Apr 1985Available from British Library Lending Division - LD:7621.07(200) / BLDSC - British Library Document Supply CentreSIGLE1. edGBUnited Kingdo
    corecore