139 research outputs found

    The tectonic development and erosion of the knox subglacial sedimentary basin, East Antarctica

    No full text
    Sedimentary basins beneath the East Antarctic Ice Sheet (EAIS) have immense potential to inform models of the tectonic evolution of East Antarctica and its ice-sheet. However, even basic characteristics such as thickness and extent are often unknown. Using airborne geophysical data, we resolve the tectonic architecture of the Knox Subglacial Sedimentary Basin in western Wilkes Land. In addition, we apply an erosion restoration model to reconstruct the original basin geometry for which we resolve geometry typical of a transtensional pull-apart basin. The tectonic architecture strongly indicates formation as a consequence of the rifting of India from East Gondwana from ca. 160-130 Ma, and we suggest a spatial link with the western Mentelle Basin offshore Western Australia. The erosion restoration model shows that erosion is confined within the rift margins, suggesting that rift structure has strongly influenced the evolution of the Denman and Scott ice streams

    Characterizing near-surface firn using the scattered signal component of the glacier surface return from airborne radio-echo sounding

    Get PDF
    We derive the scattered component (hereafter referred to as the incoherent component) of glacier surface echoes from airborne radio-echo sounding measurements over Devon Ice Cap, Arctic Canada, and compare the scattering distribution to firn stratigraphy observations from ground-based radar data. Low scattering correlates to laterally homogeneous firn above 1800m elevation containing thin, flat, and continuous ice layers and below 1200m elevation where firn predominantly consists of ice. Increased scattering between elevations of 1200-1800m corresponds to firn with inhomogeneous, undulating ice layers. No correlation was found to surface roughness and its theoretical incoherent backscattering values. This indicates that the scattering component is mainly influenced by the near-surface firn stratigraphy, whereas surface roughness effects are minor. Our results suggest that analyzing the scattered signal component of glacier surface echoes is a promising approach to characterize the spatial heterogeneity of firn that is affected by melting and refreezing processes.This work was supported by grants from UK NERC (NE/K004999), NASA (13-ICEE13-00018), NSERC (Discovery Grant/Northern Research Supplement), Alberta Innovates Technology Futures, the CRYSYS Program (Environment Canada), and a University of Alberta Northern Research Award

    Greenland subglacial lakes detected by radar

    Get PDF
    This is the final version of the article. Available from AGU via the DOI in this record.Subglacial lakes are an established and important component of the basal hydrological system of the Antarctic ice sheets, but none have been reported from Greenland. Here we present airborne radio echo sounder (RES) measurements that provide the first clear evidence for the existence of subglacial lakes in Greenland. Two lakes, with areas ~8 and ~10 km2, are found in the northwest sector of the ice sheet, ~40 km from the ice margin, and below 757 and 809 m of ice, respectively. The setting of the Greenland lakes differs from those of Antarctic subglacial lakes, being beneath relatively thin and cold ice, pointing to a fundamental difference in their nature and genesis. Possibilities that the lakes consist of either ancient saline water in a closed system or are part of a fresh, modern open hydrological system are discussed, with the latter interpretation considered more likely.Funding was provided by NERC grant NE/ H020667. Additional support was provided by NASA grant NNX11AD33G and the G. Unger Vetlesen foundation

    Wind causes Totten Ice Shelf melt and acceleration

    Get PDF
    Totten Glacier in East Antarctica has the potential to raise global sea level by at least 3.5 m, but its sensitivity to climate change has not been well understood. The glacier is coupled to the ocean by the Totten Ice Shelf, which has exhibited variable speed, thickness, and grounding line position in recent years. To understand the drivers of this interannual variability, we compare ice velocity to oceanic wind stress and find a consistent pattern of ice-shelf acceleration 19 months after upwelling anomalies occur at the continental shelf break nearby. The sensitivity to climate forcing we observe is a response to wind-driven redistribution of oceanic heat and is independent of large-scale warming of the atmosphere or ocean. Our results establish a link between the stability of Totten Glacier and upwelling near the East Antarctic coast, where surface winds are projected to intensify over the next century as a result of increasing atmospheric greenhouse gas concentrations

    Basal topographic controls on rapid retreat of Humboldt Glacier, northern Greenland

    Get PDF
    This is the final version of the article. Available from CUP via the DOI in this record.Discharge from marine-terminating outlet glaciers accounts for up to half the recent mass loss from the Greenland ice sheet, yet the causal factors are not fully understood. Here we assess the factors controlling the behaviour of Humboldt Glacier (HG), allowing us to evaluate the influence of basal topography on outlet glacier response to external forcing since part of HG’s terminus occupies a large overdeepening. HG’s retreat accelerated dramatically after 1999, coinciding with summer atmospheric warming of up to 0.19°C a–1 and sea-ice decline. Retreat was an order of magnitude greater in the northern section of the terminus, underlain by a major basal trough, than in the southern section, where the bedrock is comparatively shallow. Velocity change following retreat was spatially non-uniform, potentially due to a pinning point near HG’s northern lateral margin. Consistent with observations, numerical modelling demonstrates an order-of-magnitude greater sensitivity to sea-ice buttressing and crevasse depth (used as a proxy for atmospheric warming) in the northern section. The trough extends up to 72 km inland, so it is likely to facilitate sustained retreat and ice loss from HG during the 21st century.Funding for this work was provided by a Durham Doctoral Studentship to J.R.C. Radio-echo sounding data were acquired and processed through UK Natural Environment Research Council (NERC) grant NE/H020667 to J.A.D. and P.C. and a G. Unger Vetlesen grant to the University of Texas Institute for Geophysics (UTIG). GrOGG laser altimetry was supported by NNXAD33G to D.D.B. This paper is UTIG contribution No. 2733. S.S.R.J. was supported by UK NERC fellowship NE/J018333/1

    An ancient river landscape preserved beneath the East Antarctic Ice Sheet

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: The data used for this work is the radio-echo sounding data from the ICECAP project, which is openly accessible via the Blankenship 2017 references38,39 (HICARS1: https://doi.org/10.5067/F5FGUT9F5089; HICARS2: https://doi.org/10.5067/9EBR2T0VXUDG). The mapping data generated in this study (Fig. 3a) are openly available as GIS shapefiles at https://doi.org/10.5281/zenodo.815922373. Source data are provided with this paper—these relate to the data that underlies Figs. 3c and 4. Source data are provided with this paper.The East Antarctic Ice Sheet (EAIS) has its origins ca. 34 million years ago. Since then, the impact of climate change and past fluctuations in the EAIS margin has been reflected in periods of extensive vs. restricted ice cover and the modification of much of the Antarctic landscape. Resolving processes of landscape evolution is therefore critical for establishing ice sheet history, but it is rare to find unmodified landscapes that record past ice conditions. Here, we discover an extensive relic pre-glacial landscape preserved beneath the central EAIS despite millions of years of ice cover. The landscape was formed by rivers prior to ice sheet build-up but later modified by local glaciation before being dissected by outlet glaciers at the margin of a restricted ice sheet. Preservation of the relic surfaces indicates an absence of significant warm-based ice throughout their history, suggesting any transitions between restricted and expanded ice were rapid.National Science Foundation (NSF)NASAG. Unger Vetlesen FoundationNatural Environment Research Council (NERC
    • …
    corecore