135 research outputs found

    Temporal characteristics of the influence of punishment on perceptual decision making in the human brain

    Get PDF
    Perceptual decision making is the process by which information from sensory systems is combined and used to influence our behavior. In addition to the sensory input, this process can be affected by other factors, such as reward and punishment for correct and incorrect responses. To investigate the temporal dynamics of how monetary punishment influences perceptual decision making in humans, we collected electroencephalography (EEG) data during a perceptual categorization task whereby the punishment level for incorrect responses was parametrically manipulated across blocks of trials. Behaviorally, we observed improved accuracy for high relative to low punishment levels. Using multivariate linear discriminant analysis of the EEG, we identified multiple punishment-induced discriminating components with spatially distinct scalp topographies. Compared with components related to sensory evidence, components discriminating punishment levels appeared later in the trial, suggesting that punishment affects primarily late postsensory, decision-related processing. Crucially, the amplitude of these punishment components across participants was predictive of the size of the behavioral improvements induced by punishment. Finally, trial-by-trial changes in prestimulus oscillatory activity in the alpha and gamma bands were good predictors of the amplitude of these components. We discuss these findings in the context of increased motivation/attention, resulting from increases in punishment, which in turn yields improved decision-related processing

    Templated electrodeposition of Ag7NO11 nanowires with very high oxidation states of silver

    Get PDF
    The templated electrodeposition of 200 nm diameter nanowires of the argentic oxynitrate Ag(Ag3O4)2NO3 phase is reported. Their high surface-to-volume ratio and the high average oxidation state of Ag make these wires promising candidates for nanoscale redox processes in which both a high volumetric charge density and a high discharge rate are required. The antibiotic activity of these nanowires was demonstrated by inhibiting the growth of Bacillus cereus bacteria

    Patterning functional materials using channel diffused plasma-etched self-assembled monolayer templates

    Get PDF
    A simple and cost-effective methodology for large-area micrometer-scale patterning of a wide range of metallic and oxidic functional materials is presented. Self-assembled monolayers (SAM) of alkyl thiols on Au were micropatterned by channel-diffused oxygen plasma etching, a method in which selected areas of SAM were protected from plasma oxidation via a soft lithographic stamp. The patterned SAMs were used as templates for site-selective electrodeposition, electroless deposition and solution-phase deposition of functional materials such as ZnO, Ni, Ag thin films, and ZnO nanowires. The patterned SAMs and functional materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and tunneling AFM (TUNA).\u

    Nanopatterning of functional materials by gas phase pattern deposition of self assembled molecular thin films in combination with electrodeposition

    Get PDF
    We present a general methodology to pattern functional materials on the nanometer scale using self-assembled molecular templates on conducting substrates. A soft lithographic gas phase edge patterning process using poly(dimethylsiloxane) molds was employed to form electrically isolating organosilane patterns of a few nanometer thickness and a line width that could be tuned by varying the time of deposition. Electrodeposition was employed to deposit patterns of Ni and ZnO on these prepatterned substrates. Deposition occurred only on patches of the substrate where no organosilane monolayer was present. The process is simple, inexpensive, and scalable to large areas. We achieved formation of metallic and oxide material patterns with a lateral resolution of 80 n

    Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: A universal set of parameters for bridging prepatterned microelectrodes

    Get PDF
    Nanowires and nanotubes were synthesized from metals and metal oxides using templated cathodic electrodeposition. With templated electrodeposition, small structures are electrodeposited using a template that is the inverse of the final desired shape. Dielectrophoresis was used for the alignment of the as-formed nanowires and nanotubes between prepatterned electrodes. For reproducible nanowire alignment, a universal set of dielectrophoresis parameters to align any arbitrary nanowire material was determined. The parameters include peak-to-peak potential and frequency, thickness of the silicon oxide layer, grounding of the silicon substrate, and nature of the solvent medium used. It involves applying a field with a frequency >10(5) Hz, an insulating silicon oxide layer with a thickness of 2.5 mu m or more, grounding of the underlying silicon substrate, and the use of a solvent medium with a low dielectric constant. In our experiments, we obtained good results by using a peak-to-peak potential of 2.1 V at a frequency of 1.2 x 10(5) Hz. Furthermore, an indirect alignment technique is proposed that prevents short circuiting of nanowires after contacting both electrodes. After alignment, a considerably lower resistivity was found for ZnO nanowires made by templated electrodeposition (2.2-3.4 x 10(-3) Omega m) compared to ZnO nanorods synthesized by electrodeposition (10 Omega m) or molecular beam epitaxy (MBE) (500 Omega m). (C) 2010 Elsevier Inc. All rights reserved

    Study of 19^{19} Na at SPIRAL

    Get PDF
    NESTERInternational audienceThe excitation function for the elastic-scattering reaction p18Ne, p18Ne was measured with the first radioactive beam from the SPIRAL facility at the GANIL laboratory and with a solid cryogenic hydrogen target. Several broad resonances have been observed, corresponding to new excited states in the unbound nucleus 19Na. In addition, two-proton emission events have been identified and are discussed

    Metastatic uveal melanoma: Treatment strategies and survival—results from the dutch melanoma treatment registry

    Get PDF
    Uveal melanoma (UM) is the most common primary intraocular tumor in adults. Up to 50% of UM patients will develop metastases. We present data of 175 metastatic UM patients diagnosed in the Netherlands between July 2012 and March 2018. In our cohort, elevated lactate dehydrogenase level (LDH) is an important factor associated with poorer survival (Hazard Ratio (HR) 9.0, 95% Confidence Interval (CI) 5.63–14.35), and the presence of liver metastases is negatively associated with survival (HR 2.09, 95%CI 1.07–4.08). We used data from the nation-wide Dutch Melanoma Treatment Registry (DMTR) providing a complete overview of the location of metastases at time of stage IV disease. In 154 (88%) patients, the liver was affected, and only 3 patients were reported to have brain metastases. In 63 (36%) patients, mutation analysis was performed, showing a GNA11 mutation in 28.6% and a GNAQ mutation in 49.2% of the analyzed patients. In the absence of standard care of treatment options, metastatic UM patients are often directed to clinical trials. Patients participating in clinical trials are often subject to selection and usually do not represent the entire metastatic UM population. By using our nation-wide cohort, we are able to describe real-life treatment choices made in metastatic UM patients and 1-year surv

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7Ă—10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4Ă—10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4Ă—10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat
    • …
    corecore