113 research outputs found

    A meta-analysis of alcohol drinking and cancer risk

    Get PDF
    To evaluate the strength of the evidence provided by the epidemiological literature on the association between alcohol consumption and the risk of 18 neoplasms, we performed a search of the epidemiological literature from 1966 to 2000 using several bibliographic databases. Meta-regression models were fitted considering linear and non-linear effects of alcohol intake. The effects of characteristics of the studies, of selected covariates (tobacco) and of the gender of individuals included in the studies, were also investigated as putative sources of heterogeneity of the estimates. A total of 235 studies including over 117 000 cases were considered. Strong trends in risk were observed for cancers of the oral cavity and pharynx, oesophagus and larynx. Less strong direct relations were observed for cancers of the stomach, colon and rectum, liver, breast and ovary. For all these diseases, significant increased risks were found also for ethanol intake of 25 g per day. No significant nor consistent relation was observed for cancers of the pancreas, lung, prostate or bladder. Allowance for tobacco appreciably modified the relations with laryngeal, lung and bladder cancers, but not those with oral, oesophageal or colorectal cancers. This meta-analysis showed no evidence of a threshold effect for most alcohol-related neoplasms. The inference is limited by absence of distinction between lifelong abstainers and former drinkers in several studies, and the possible selective inclusion of relevant sites only in cohort studies. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Estimating weekly excess mortality at sub-national level in Italy during the COVID-19 pandemic

    Get PDF
    In this study we present the first comprehensive analysis of the spatio-temporal differences in excess mortality during the COVID-19 pandemic in Italy. We used a population-based design on all-cause mortality data, for the 7,904 Italian municipalities. We estimated sex-specific weekly mortality rates for each municipality, based on the first four months of 2016-2019, while adjusting for age, localised temporal trends and the effect of temperature. Then, we predicted all-cause weekly deaths and mortality rates at municipality level for the same period in 2020, based on the modelled spatio-temporal trends. Lombardia showed higher mortality rates than expected from the end of February, with 23,946 (23,013 to 24,786) total excess deaths. North-West and North-East regions showed one week lag, with higher mortality from the beginning of March and 6,942 (6,142 to 7,667) and 8,033 (7,061 to 9,044) total excess deaths respectively. We observed marked geographical differences also at municipality level. For males, the city of Bergamo (Lombardia) showed the largest percent excess, 88.9% (81.9% to 95.2%), at the peak of the pandemic. An excess of 84.2% (73.8% to 93.4%) was also estimated at the same time for males in the city of Pesaro (Central Italy), in stark contrast with the rest of the region, which does not show evidence of excess deaths. We provided a fully probabilistic analysis of excess mortality during the COVID-19 pandemic at sub-national level, suggesting a differential direct and indirect effect in space and time. Our model can be used to help policy-makers target measures locally to contain the burden on the health-care system as well as reducing social and economic consequences. Additionally, this framework can be used for real-time mortality surveillance, continuous monitoring of local temporal trends and to flag where and when mortality rates deviate from the expected range, which might suggest a second wave of the pandemic

    Estimating weekly excess mortality at sub-national level in Italy during the COVID-19 pandemic

    Get PDF
    In this study we present the first comprehensive analysis of the spatio-temporal differences in excess mortality during the COVID-19 pandemic in Italy. We used a population-based design on all-cause mortality data, for the 7,904 Italian municipalities. We estimated sex-specific weekly mortality rates for each municipality, based on the first four months of 2016-2019, while adjusting for age, localised temporal trends and the effect of temperature. Then, we predicted all-cause weekly deaths and mortality rates at municipality level for the same period in 2020, based on the modelled spatio-temporal trends. Lombardia showed higher mortality rates than expected from the end of February, with 23,946 (23,013 to 24,786) total excess deaths. North-West and North-East regions showed one week lag, with higher mortality from the beginning of March and 6,942 (6,142 to 7,667) and 8,033 (7,061 to 9,044) total excess deaths respectively. We observed marked geographical differences also at municipality level. For males, the city of Bergamo (Lombardia) showed the largest percent excess, 88.9% (81.9% to 95.2%), at the peak of the pandemic. An excess of 84.2% (73.8% to 93.4%) was also estimated at the same time for males in the city of Pesaro (Central Italy), in stark contrast with the rest of the region, which does not show evidence of excess deaths. We provided a fully probabilistic analysis of excess mortality during the COVID-19 pandemic at sub-national level, suggesting a differential direct and indirect effect in space and time. Our model can be used to help policy-makers target measures locally to contain the burden on the health-care system as well as reducing social and economic consequences. Additionally, this framework can be used for real-time mortality surveillance, continuous monitoring of local temporal trends and to flag where and when mortality rates deviate from the expected range, which might suggest a second wave of the pandemic

    Community-level characteristics of COVID-19 vaccine hesitancy in England: A nationwide cross-sectional study

    Get PDF
    One year after the start of the COVID-19 vaccination programme in England, more than 43 million people older than 12 years old had received at least a first dose. Nevertheless, geographical differences persist, and vaccine hesitancy is still a major public health concern; understanding its determinants is crucial to managing the COVID-19 pandemic and preparing for future ones. In this cross-sectional population-based study we used cumulative data on the first dose of vaccine received by 01-01-2022 at Middle Super Output Area level in England. We used Bayesian hierarchical spatial models and investigated if the geographical differences in vaccination uptake can be explained by a range of community-level characteristics covering socio-demographics, political view, COVID-19 health risk awareness and targeting of high risk groups and accessibility. Deprivation is the covariate most strongly associated with vaccine uptake (Odds Ratio 0.55, 95%CI 0.54-0.57; most versus least deprived areas). The most ethnically diverse areas have a 38% (95%CI 36-40%) lower odds of vaccine uptake compared with those least diverse. Areas with the highest proportion of population between 12 and 24 years old had lower odds of vaccination (0.87, 95%CI 0.85-0.89). Finally increase in vaccine accessibility is associated with COVID-19 vaccine coverage (OR 1.07, 95%CI 1.03-1.12). Our results suggest that one year after the start of the vaccination programme, there is still evidence of inequalities in uptake, affecting particularly minorities and marginalised groups. Strategies including prioritising active outreach across communities and removing practical barriers and factors that make vaccines less accessible are needed to level up the differences

    Long-term exposure to air-pollution and COVID-19 mortality in England: a hierarchical spatial analysis

    Get PDF
    Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO2 and PM2.5 on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO2 and PM2.5 concentration during 2014–2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: −0.2%, 1.2%) and 1.4% (95% CrI: −2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m3 increase in NO2 and PM2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO2 exposure on COVID-19 mortality, while the effect of PM2.5 remains more uncertain

    Advances in spatiotemporal models for non-communicable disease surveillance

    Get PDF
    Surveillance systems are commonly used to provide early warning detection or to assess an impact of an intervention/policy. Traditionally, the methodological and conceptual frameworks for surveillance have been designed for infectious diseases, but the rising burden of non-communicable diseases (NCDs) worldwide suggests a pressing need for surveillance strategies to detect unusual patterns in the data and to help unveil important risk factors in this setting. Surveillance methods need to be able to detect meaningful departures from expectation and exploit dependencies within such data to produce unbiased estimates of risk as well as future forecasts. This has led to the increasing development of a range of space-time methods specifically designed for NCD surveillance. We present an overview of recent advances in spatiotemporal disease surveillance for NCDs, using hierarchically specified models. This provides a coherent framework for modelling complex data structures, dealing with data sparsity, exploiting dependencies between data sources and propagating the inherent uncertainties present in both the data and the modelling process. We then focus on three commonly used models within the Bayesian Hierarchical Model (BHM) framework and, through a simulation study, we compare their performance. We also discuss some challenges faced by researchers when dealing with NCD surveillance, including how to account for false detection and the modifiable areal unit problem. Finally, we consider how to use and interpret the complex models, how model selection may vary depending on the intended user group and how best to communicate results to stakeholders and the general public

    Ambient heat exposure and COPD hospitalisations in England: a nationwide case-crossover study during 2007-2018

    Get PDF
    Background: There is emerging evidence suggesting a link between ambient heat exposure and chronic obstructive pulmonary disease (COPD) hospitalisations. Individual and contextual characteristics can affect population vulnerabilities to COPD hospitalisation due to heat exposure. This study quantifies the effect of ambient heat on COPD hospitalisations and examines population vulnerabilities by age, sex and contextual characteristics. Methods: Individual data on COPD hospitalisation at high geographical resolution (postcodes) during 2007–2018 in England was retrieved from the small area health statistics unit. Maximum temperature at 1 km ×1 km resolution was available from the UK Met Office. We employed a case-crossover study design and fitted Bayesian conditional Poisson regression models. We adjusted for relative humidity and national holidays, and examined effect modification by age, sex, green space, average temperature, deprivation and urbanicity. Results: After accounting for confounding, we found 1.47% (95% Credible Interval (CrI) 1.19% to 1.73%) increase in the hospitalisation risk for every 1°C increase in temperatures above 23.2°C (lags 0–2 days). We reported weak evidence of an effect modification by sex and age. We found a strong spatial determinant of the COPD hospitalisation risk due to heat exposure, which was alleviated when we accounted for contextual characteristics. 1851 (95% CrI 1 576 to 2 079) COPD hospitalisations were associated with temperatures above 23.2°C annually. Conclusion: Our study suggests that resources should be allocated to support the public health systems, for instance, through developing or expanding heat-health alerts, to challenge the increasing future heat-related COPD hospitalisation burden

    Spatial and spatio-temporal models with R-INLA

    Get PDF
    During the last three decades, Bayesian methods have developed greatly in the field of epidemiology. Their main challenge focusses around computation, but the advent of Markov Chain Monte Carlo methods (MCMC) and in particular of the WinBUGS software has opened the doors of Bayesian modelling to the wide research community. However model complexity and database dimension still remain a constraint.Recently the use of Gaussian random fields has become increasingly popular in epidemiology as very often epidemiological data are characterised by a spatial and/or temporal structure which needs to be taken into account in the inferential process. The Integrated Nested Laplace Approximation (INLA) approach has been developed as a computationally efficient alternative to MCMC and the availability of an R package (R-INLA) allows researchers to easily apply this method.In this paper we review the INLA approach and present some applications on spatial and spatio-temporal data. © 2012 Elsevier Ltd

    Aircraft noise and cardiovascular morbidity and mortality near Heathrow Airport: A case-crossover study

    Get PDF
    Aircraft noise causes annoyance and sleep disturbance and there is some evidence of associations between long-term exposures and cardiovascular disease (CVD). We investigated short-term associations between previous day aircraft noise and cardiovascular events in a population of 6.3 million residing near Heathrow Airport using a case-crossover design and exposure data for different times of day and night. We included all recorded hospitalisations (n = 442,442) and deaths (n = 49,443) in 2014–2018 due to CVD. Conditional logistic regression was used to estimate the ORs and adjusted for NO2 concentration, temperature, and holidays. We estimated an increase in risk for 10 dB increment in noise during the previous evening (Leve OR = 1.007, 95% CI 0.999–1.015), particularly from 22:00–23:00 h (OR = 1.007, 95% CI 1.000–1.013), and the early morning hours 04:30–06:00 h (OR = 1.012, 95% CI 1.002–1.021) for all CVD admissions, but no significant associations with day-time noise. There was effect modification by age-sex, ethnicity, deprivation, and season, and some suggestion that high noise variability at night was associated with higher risks. Our findings are consistent with proposed mechanisms for short-term impacts of aircraft noise at night on CVD from experimental studies, including sleep disturbance, increases in blood pressure and stress hormone levels and impaired endothelial function

    Aircraft noise and cardiovascular morbidity and mortality near Heathrow Airport: a case-crossover study

    Get PDF
    Aircraft noise causes annoyance and sleep disturbance and there is some evidence of associations between long-term exposures and cardiovascular disease (CVD). We investigated short-term associations between previous day aircraft noise and cardiovascular events in a population of 6.3 million residing near Heathrow Airport using a case-crossover design and exposure data for different times of day and night. We included all recorded hospitalisations (n=442,442) and deaths (n=49,443) in 2014-2018 due to CVD. Conditional logistic regression was used to estimate the ORs and adjusted for NO2 concentration, temperature, and holidays. We estimated an increase in risk for 10dB increment in noise during the previous evening (Leve OR = 1.007, 95% CI 0.999-1.015), particularly from 22:00-23:00h (OR= 1.007, 95% CI 1.000-1.013), and the early morning hours 04:30-06:00h (OR= 1.012, 95% CI 1.002-1.021) for all CVD admissions, but no significant associations with day-time noise. There was effect modification by age-sex, ethnicity, deprivation, and season, and some suggestion that high noise variability at night was associated with higher risks. Our findings are consistent with proposed mechanisms for short-term impacts of aircraft noise at night on CVD from experimental studies, including sleep disturbance, increases in blood pressure and stress hormone levels and impaired endothelial function
    • …
    corecore