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Key messages

What is already known on this topic
 ► A handful of studies examine the effect of heat 
exposure on chronic obstructive pulmonary 
disease (COPD) hospitalisations, and the results 
are suggestive of a positive effect.

What this study adds
 ► We examine the effect of heat exposure on 
COPD hospitalisation using 12 years’ worth 
of individual nationwide data in England. For 
every 1°C increase in summer temperatures 
higher than 23.2°C, the risk of COPD 
hospitalisation increases by 1.47%. We found 
weak evidence of an effect modification by age 
and sex, but strong in space, with populations 
in the North and in the South East of England 
being more vulnerable.

How this study might affect research, practice and/
or policy

 ► Not only considering the rising temperatures 
but also future COPD prevalence and 
population ageing trends, the burden of heat 
exposure- related COPD hospitalisation is 
expected to increase. Our findings can be used 
as a guidance to policymakers, so resources 
are allocated to support the preparedness and 
resilience of public health systems.

AbsTrACT
background There is emerging evidence suggesting 
a link between ambient heat exposure and chronic 
obstructive pulmonary disease (COPD) hospitalisations. 
Individual and contextual characteristics can affect 
population vulnerabilities to COPD hospitalisation due to 
heat exposure. This study quantifies the effect of ambient 
heat on COPD hospitalisations and examines population 
vulnerabilities by age, sex and contextual characteristics.
Methods Individual data on COPD hospitalisation 
at high geographical resolution (postcodes) during 
2007–2018 in England was retrieved from the small 
area health statistics unit. Maximum temperature at 
1 km ×1 km resolution was available from the UK Met 
Office. We employed a case- crossover study design and 
fitted Bayesian conditional Poisson regression models. 
We adjusted for relative humidity and national holidays, 
and examined effect modification by age, sex, green 
space, average temperature, deprivation and urbanicity.
results After accounting for confounding, we found 
1.47% (95% Credible Interval (CrI) 1.19% to 1.73%) 
increase in the hospitalisation risk for every 1°C increase 
in temperatures above 23.2°C (lags 0–2 days). We 
reported weak evidence of an effect modification by 
sex and age. We found a strong spatial determinant 
of the COPD hospitalisation risk due to heat exposure, 
which was alleviated when we accounted for contextual 
characteristics. 1851 (95% CrI 1 576 to 2 079) COPD 
hospitalisations were associated with temperatures 
above 23.2°C annually.
Conclusion Our study suggests that resources should 
be allocated to support the public health systems, for 
instance, through developing or expanding heat- health 
alerts, to challenge the increasing future heat- related 
COPD hospitalisation burden.

InTroduCTIon
Chronic obstructive pulmonary disease (COPD) 
is the most prevalent chronic respiratory disease 
worldwide, with point prevalence varying from 
1.56% in Sub- Saharan Africa to 6.09% in Central 
Europe, Eastern Europe and central Asia in 2007.1 
In England, COPD is a significant cause of morbidity 
and mortality, leading to 115 000 emergency 
admissions and 24 000 deaths per year.2 The causes 
of acute exacerbation of COPD are established and 
include factors such as sex, age, COPD severity and 
comorbidities.3 Environmental triggers of COPD 
hospitalisations such as air- pollution exposure have 

also been discussed extensively.4 There is emerging 
evidence suggesting a link between heat expo-
sure and COPD hospitalisation, either directly or 
through exacerbating the effects of factors such as 
ozone concentration that are associated with these 
events.5

Several previous studies have examined the effect 
of high temperatures on COPD hospitalisations, 
reporting higher rates with heat exposure6–8 and 
heat waves.9 10 The majority of these studies are 
based on aggregated data (at the city or regional 
level),6 9–11 whereas only a few considered indi-
vidual data.7 8 Use of individual data allows investi-
gation of possible effect modification by individual 
factors such as age and sex, and it avoids ecolog-
ical bias arising when group- level associations do 
not reflect associations at the individual level.12 
Although previous studies have assessed the vulner-
ability related to individual factors, such as age 
and sex;6 8 contextual characteristics, such as green 
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Environmental exposure

space, average temperature, deprivation and urbanicity are still 
poorly characterised. Two of the previous studies have examined 
the spatial variation of the temperature effect on COPD hospi-
talisation, using, however, very coarse geographical resolution.6 8

In this nationwide study in England during 2007–2018, we 
investigated the effect of heat exposure on COPD hospital 
admissions using a semiecological framework. We took advan-
tage of the individual data availability of the outcome and 
adopted a case- crossover study design that naturally accounts 
for time- constant variables at the individual patient level. Thus, 
we were able to account for factors like age, sex, comorbidities, 
deprivation as well as lifestyle characteristics such as physical 
activity through the study design. We also adjusted for time- 
varying confounders, such as air- pollution exposure and rela-
tive humidity and examined how the effect of temperature is 
modified by age, sex and in space. Last, we assessed the extent 
to which contextual characteristics, such as green space, depri-
vation, urbanicity and average temperature, contribute to the 
observed spatial variation of the effect of temperature.

METhods
study population
We included inpatient hospital admissions from COPD in 
England during 2007–2018 as retrieved from Hospital Episode 
Statistics data held by the UK Small Area Health Statistics Unit, 
provided by the Health and Social Care Information Centre. 
Age, postcode of residence at time of the hospitalisation and date 
of hospitalisation were available for each record. We focused 
only on admissions with acute exacerbation of COPD as primary 
diagnosis. We investigated the following diagnostic groups: 
J40–44 according to the International Classification of Disease 
V.10.13 The analysis is restricted to June, July and August.

Exposure
Daily minimum and maximum temperatures were available at 
1 km×1 km resolution from the UK Met Office with methods 
described elsewhere.14 In brief, the daily temperature in each 
grid cell was estimated based on inverse- distance- weighted inter-
polation of monitoring data, also accounting for latitude and 
longitude, elevation, coastal influence and proportion of urban 
land use. To assign daily temperature to health records, the 
postcode centroids of each patient were spatially linked to the 
1 km×1 km grid cell, applying a 100 m fuzziness to the postcode 
location to fulfil governance requirements. We focused on daily 
maximum temperature, as we are interested in heat exposure, 
averaged over the day of hospitalisation and the preceding 2 days 
(lags 0–2 days) to estimate the cumulative health effects.15–17

Covariates
We used hourly concentration of Ozone (O3) and atmospheric 
particulate matter that has a diameter of less than 2.5 µm (PM2.5), 
as retrieved from the unified model produced by the Met Office 
measured in µg/m3.18 The model outcome is then postprocessed 
to correct for bias using observational data.18 For O3, we calcu-
lated the daily mean of the 8 hours of maximum O3, whereas 
for PM2.5, the daily mean concentration. The geographical 
resolution of the air pollutants is 12 km×12 km for the years 
2007–2011 and 2 km×2 km during 2012–2019. We adjusted for 
relative humidity (daily and at a 10 km×10 km grid) through 
a model that integrates Met Office data on daily observations 
from the meteorological stations and monthly nationwide data 
as retrieved from HadUK,14 see online supplemental text S1.1. 
All covariates were included at lags 0–2 days, to match the 

exposure lags. O3, PM2.5 and relative humidity were included 
as linear terms in the model. We also accounted for the effect of 
national holidays through a dummy variable.

spatial effect modifiers
We selected these spatial effect modifiers based on consistency 
with the literature,19 data availability in England and a priori 
hypotheses, see online supplemental text S1.3. As a measure of 
green space, we used the proportion of a region that is covered 
by green land such as woodland, agricultural land, grassland and 
other natural vegetated land as classified in the Land Cover Map 
2015 (LCM V.15).20Deprivation is measured using the Index 
of Multiple Deprivation (IMD) 2015, as retrieved from the 
Ministry of Housing, Communities and Local Government.21 
We used the quintiles of IMD in our analysis. For these two 
modifiers, we selected the year 2015 as the most representative 
data point, among the ones available, for our study period. Urba-
nicity (predominantly rural, urban with significant rural and 
predominantly urban) is based on the Office for National Statis-
tics classification in 2011 (the most recent year for which data 
was available at the time of analysis).22 We also incorporated 
the average temperature during 2007–2018, as a measure of 
adaptation on higher temperatures.23 Green space and average 
temperature were included as linear terms in the model. Due to 
power and computational considerations, all spatial effect modi-
fiers were included at the lower tier local authority level (LTLA; 
online supplemental figure 1).

statistical methods
We used a time- stratified case- crossover design, commonly used 
for analysing the effect of transient exposures.24 25 The tempera-
ture on the day of COPD hospitalisation (event day) is compared 
with the temperature on non- event days. In the case- crossover 
design, a case serves as its own control, thus, this design auto-
matically controls for factors that do not vary or vary slowly 
over time, such as sex or deprivation. We selected non- event 
days on the same day of week and calendar month as the event 
day to avoid the overlap bias.26 Thus, we could have maximum 
4 non- event days per event day.

We modelled the effect of temperature on event compared 
with non- event days by specifying Bayesian hierarchical condi-
tional Poisson models, with a fixed effect on the event/non- event 
day grouping.19 27 We accounted for recurrent hospitalisations 
by adding a random effect on each patient. For the main anal-
ysis, we treated relative humidity and national holidays as 
confounders and, thus, adjusted for them, but we did not adjust 
for air pollutants because they were treated as mediators, see 
directed acyclic graph on online supplemental text S1.3.28 As 
the effect of temperature on health is typically non- linear,19 we 
used piecewise linear threshold models, to allow more flexible 
fits, but retain ease of interpretation. We considered nationwide 
thresholds, specified as the 50th, 55th …, 95th percentile of 
the daily temperatures. We selected the threshold based on the 
WAIC, a fully Bayesian estimate of predictive accuracy defined 
as the log pointwise posterior predictive density adjusted for 
overfitting by correcting for effective number of parameters, 
with smaller values indicating better fits.29 We then ran addi-
tional models allowing the effect of heat exposure (temperatures 
above the threshold) to vary by sex (male and female), age (0–64, 
65–74, 75+) and space (LTLA). We additionally included the air 
pollutants in these models to examine the sensitivity of the effect 
if the air pollutants were confounders. For the spatial effect 
modification, we used the Besag- York- Mollie prior that assumes 
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Environmental exposure

Figure 1 Flowchart of COPD hospitalisations. COPD, chronic 
obstructive pulmonary disease.

local dependency among adjacent LTLAs.30 We fitted this model 
with and without the spatial effect modifiers, while adjusting 
for confounders. The model is described in detail in the online 
supplemental text S1.2. Results are reported as medians and 
95% CrI (CrI; 95% probability that the true values lie within 
this interval) of % increase in the hospitalisation risk for every 
1°C increase in temperatures above the threshold31; additionally, 
we report posterior probabilities of a positive % increase. For 
the spatially varying risk, we also reported posterior probabili-
ties that the % hospitalisation risk is larger than the average % 
hospitalisation risk.

Population attributable fraction
To calculate the population attributable fraction, we extended32 
to incorporate the spatial dimension of the effect of heat expo-
sure. We first calculated the cumulative heat exposure—COPD 
hospitalisation relative risk (RRs) for the sth LTLA. We could 
then calculate the attributable fraction: AFs = (RRs− 1)/RRs. Let 
ns be the number of hospitalisations at days above 23.2°C and 
Ns the total number of hospitalisations, then AFs(ns/Ns) is the 
population attributable fraction, that is, the number of COPD 
hospitalisations attributable to summer heat exposure. In our 
Bayesian formulation, we were able to propagate all the random 
variable- specific uncertainty in our estimates.

sensitivity analyses
We repeated the main analysis for the lags 0, 1 and 2 inde-
pendently. We also used b- splines to model the temperature effect 
and examined the linearity assumption above the threshold.

All analyses are run in Numerical Inference for Hierarchical 
Models Using Bayesian and Likelihood Estimation.33 The code 
for running the analysis is online available at https://github.com/ 
gkonstantinoudis/COPDTempSVC.

rEsulTs
Population
We retrieved 1 570 288 COPD hospital records during 2007–
2018 in England. After removing the duplicated records, the 
ones with place of residence outside England, the ones not 
occurred in summer months and the ones for which we could 
not sample non- event days, we had 320 411 records available 
for the analysis (figure 1).

Exposure, covariates and effect modifiers
The median maximum temperature across England has increased 
from 19.42°C in 2007 to 22.20°C in 2018 (online supplemental 
table S1). The median maximum temperature exposure is 
20.91°C at lag 0 for event and 20.39°C non- event days, 20.97°C 
for event and 20.94°C for non- event days at lag 1, 20.92°C for 
event and 20.90°C for non- event days at lag 2°C and 20.93°C for 
event and 20.92°C for non- event days at lag 0–2 (online supple-
mental table S2). The distribution of the covariates across event 
and non- event days and the spatial distribution of the effect 
modifiers at the LTLA level is found in online supplemental table 
S2- 5, and figure S2- 5.

WAIC analysis
In the model adjusted for relative humidity and national holi-
days, the 80th percentile of the temperature (23.2°C) was the 
threshold minimising the WAIC (online supplemental table S6). 
We found a 0.37% (95% CrI 0.09% to 0.65%) increase in the 
COPD hospitalisation risk for every 1°C increase in tempera-
tures below 23.2°C (online supplemental table S6). In contrast, 

the effect above 23.2°C was higher, namely, 1.46% (95% CrI 
1.19% to 1.71%) (online supplemental table S6). All subse-
quent analyses were conducted using the 80th percentile of the 
temperature as the threshold.

Age and sex effect modification
In the unadjusted models, the percentage of risk increase in 
hospitalisations for every 1°C increase above the threshold 
varies from 0.92% (95% CrI 0.25% to 1.63%) in women 64 
years old or younger to 1.56% (95% CrI 0.94% to 2.20%) in 
women aged 65–74 (figure 2 and online supplemental table S6). 
After adjusting for relative humidity and national holidays, the 
effects are slightly higher varying from 1.14% (95% CrI 0.39% 
to 1.84%) in women 64 years old or younger to 1.75% (95% CrI 
1.13% to 2.41%) in men 65–74 years old (Figure 2 and online 
supplemental table S7). Additionally adjusting for air pollution 
substantially reduces the observed effect (figure 2 and online 
supplemental table S7).

spatial effect modification
The spatial variation of the effect of heat exposure on COPD 
hospitalisations is shown in figure 3. The risk of COPD hospital-
isation is less than 1.31% for every 1°C increase in heat exposure 
in South West, top left panel, figure 3. In contrast, populations 
in the South East are more vulnerable: the probability that the 
effect of heat exposure is larger than the national average esti-
mate ranges between 0.6 and 1, top right panel (figure 3). After 
incorporating green space, deprivation, urbanicity and average 
temperature, the observed variation of the effect of temperature 
is slightly alleviated, bottom panels (figure 3).

We found weak evidence that populations in areas with higher 
proportions of green space, larger average temperature and 
higher level of urbanicity are more resilient to COPD hospital-
isations due to heat exposure, table 1. If we increase an LTLA’s 
proportion of green space by 1%, the spatial effect of the heat 
exposure changes by −1.46% (95% CrI −6.99% to 4.39%), 
table 1. For every 1°C increase in the average temperature per 
LTLA, the spatial effect of the heat exposure changes by −0.41% 
(95% CrI −1.49% to 0.71%), table 1. The spatial effect of heat 
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Figure 2 Percentage risk of chronic obstructive pulmonary disease (COPD) hospitalisation for every 1°C increase in the temperatures above 23.2°C 
during the summer months between 2007 and 2018, for the unadjusted (left panel), the model adjusted for relative humidity (RH) and national 
holidays (NL) (mid panel) and the model additional adjusted for air pollution (POL) (right panel). Results are stratified by age (0–64, 65–74, 75+, 
total) and sex (male, female, total).

Figure 3 Median spatial chronic obstructive pulmonary disease (COPD) hospitalisation risk for every 1°C increase in the temperatures above 23.2°C 
and posterior probability that the risk is larger than the overall risk in England during the summer months between 2007 and 2018. The top panels 
refer to the model without incorporating contextual characteristics, whereas the panels below otherwise. All models were fully adjusted.

exposure in urban LTLAs with significant rural and predomi-
nantly urban LTLAs changes by −0.79% (95% CrI −3.10% to 
1.51%) and −1.57% (95% CrI −4.16% to 0.96%), respectively, 
compared with predominantly rural LTLAs, table 1.

Population attributable burden
We found that 1 851 (95% CrI 1 576 to 2 079) COPD hospital-
isations were associated with temperatures above 23.2°C annu-
ally. This accounts for 7.8% (95% CrI 6.7% to 8.8%) of the total 

COPD hospitalisations during the summer months from 2007 
to 2019. The proportion of COPD hospitalisations attributable 
to temperatures above the threshold has a clear spatial structure 
and is more than 8% in East Midlands, East of England, London 
and South East, while it is below 5% in the South West (figure 4).

sensitivity analysis
The lag with the highest influence was lag 1 with the risk of 
COPD hospitalisation being 1.37% (95% CrI 1.14% to 1.58%) 
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Table 1 Median, 95% credible intervals of the percentage change 
of the heat exposure- related spatial hospitalisation risk due to 
green space, average temperature, index of multiple deprivation and 
urbanicity and probability that this percentage change is higher than 0

Effect modifier Percentage change Pr (% change >0)*

Green space† −1.46 (−6.99 to 4.39) 0.30

Average temperature‡ −0.41 (−1.49 to 0.71) 0.22

IMD§

  Q1 *

  Q2 0.81 (−1.16 to 3.08) 0.78

  Q3 1.57 (−0.76 to 4.06) 0.91

  Q4 0.75 (−1.68 to 3.36) 0.71

  Q5 1.62 (−1.31 to 4.49) 0.85

Predominantly rural *

Urban with significant rural −0.79 (−3.10 to 1.51) 0.25

Predominantly urban −1.57 (−4.16 to 0.96) 0.12

*Posterior probability that the percentage change is larger than zero.
†Green space is the proportion of a region covered by green land such as 
woodland, agricultural land, grassland and other natural vegetated land.
‡The average temperature is the mean summer temperature per LTLA during 
2007–2018oC.
§Index of multiple deprivation. IMD is calculated based on the following domains: 
(a) income, (b) employment, (c) education, skills and training, (d) health and 
disability, (e) crime, (f) barriers to housing and services and (g) living environment 
deprivation. Q1 denotes the most deprived areas, whereas Q5 the least deprived.
IMD, Index of Multiple Deprivation; LTLA, lower tier local authority.

Figure 4 The percentage of chronic obstructive pulmonary disease 
(COPD) hospitalisations by lower tier local authorities attributed to 
exposure to summer temperatures above 23.2°C during 2007–2018 
in England. This effect assumes a causal relationship between heat 
exposure and COPD hospitalisation risk. The island on the left is a 
zoomed version of London.

for every 1°C increase in heat exposure. For lag 0 and lag 2, 
the point estimate was still positive, but lower in magnitude, 
0.71% (95% CrI 0.50% to 0.93%) and 1.01% (95% CrI 0.78% 
to 1.24%), respectively, likely due to the correlation with 
temperatures at lag 1. The linearity assumption above the 23.2°C 
threshold looks reasonable (online supplemental figure S6).

dIsCussIon
This is the first nationwide case- crossover study in England 
investigating the short- term effects of heat exposure on COPD 
hospitalisation. After accounting for confounding, the results 
indicate that for every 1°C increase in heat exposure the COPD 
hospitalisation risk increases by 1.47% (95% CrI 1.19% to 
1.73%), with evidence that PM2.5 and O3 mediate this relation-
ship. We found weak evidence of an effect modification by sex 
and age. The attributable burden of heat exposure has a clear 
spatial structure, with areas in East Midlands, East of England, 
London and South East affected the most. Assuming a causal 
relationship, 7.8% (95% CrI 6.7% to 8.8%) of COPD hospital-
isations could be attributed to heat exposure during the summer 
months between 2007 and 2018.

The main strength of our study is the availability of postal 
codes, exploiting the highest spatial resolution available for 
linkage with the exposure and confounding factors. Such 
geographical resolution is expected to minimise misclassification, 
resulting from any spatial misalignment between the outcome 
and exposure/confounder. The availability of individual data 
for the outcome also minimises ecological bias,12 while guaran-
teeing high statistical power due to the population- based nature 
of the study. We ascertained hospital records from NHS digital 
covering almost all hospitalisation occurred in the public sector 
in England during 2007–2018.

Our study has some limitations. First, residential temperature 
does not reflect the actual temperature exposure of an individual, 
as individuals are exposed to different temperatures in the course 
of the day. In addition to this, the outdoor temperature, as 
provided by Met Office, does not reflect the actual temperature 
exposure inside the house. Nevertheless, in line with most of the 
studies in this field and given the lack of more precise individual 
exposure data, we used residential temperature outdoors as a 
proxy for the individual exposure. To allow for flexible fits, we 
used a linear threshold model. More complex relationships may 
need multiple thresholds; however, the WAIC analysis suggested 
that the linearity assumption suffices. Although we adjusted for 
the main COPD hospitalisation environmental contributors, we 
could not evaluate other potential confounders (eg, seasonal 
allergies and pollen counts) due to the lack of available data. 
Additionally, exposure to other air pollutants, such as NO2, SO2, 
might also confound the observed relationship; we decided to 
adjust for PM2.5 and O3 as they seem to have a larger impact on 
COPD hospitalisation and to avoid potential collinearity with 
other pollutants.

Our results can be compared with studies examining COPD 
hospital admissions and ambient temperatures during the hottest 
months.6 11 34 35 Our study is in line with a US study including 
12.5 million participants that found a 4.7% (95% CrI 3.9% to 
5.5%) increase in the COPD hospitalisation rate at lag 0 for 
every 5.6°C increase in the average daily temperature during 
May–September.6 Our study is also in line with a case- crossover 
study in Brazil that reported a 5% (95% CrI 4% to 6%) increase 
in the hospitalisation odds for every 5°C increase in the average 
temperature (0–3 lags) during the 4 hottest months.11 In contrast, 
a study in New York reported a 7.64% increase in the risk of 
COPD admissions for each 1°C increase in daily mean apparent 
temperature above 32°C.35 A study in 12 European cities, 
reported a 4.5% (95% CrI 1.9 to 7.3) and 3.1% (95% CrI 0.8 to 
5.5) increase in total respiratory admissions (the majority being 
COPD) in Mediterranean and North- Continental cities, respec-
tively, for every for each 1°C increase in the maximum apparent 
temperature (lag 0–3 days) above the 90th percentile.36 A study 
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in Taiwan reported negative correlation between the average 
daily temperature and emergency admissions with COPD, but 
a 14% increase in the emergency COPD admissions when the 
diurnal temperature range is larger than 9.6°C.34

We found weak evidence of an effect modification by age 
and sex, but discrepancies in vulnerability in space. A previous 
study in Brazil reported higher COPD hospitalisation odds for 
women and the older people.11 In the models adjusted for rela-
tive humidity and national holidays, in line with a previous study 
in the USA,6 the age group 65–74 was the most vulnerable. Some 
spatial variability by regions or counties was also observed in 
previous studies in Brazil and the USA, potentially due to socio-
economic characteristics or exposure to higher average summer 
temperatures.6 11 In our study, green space, average temperature, 
deprivation and urbanicity explained some of the observed vari-
ation in the observed spatial vulnerabilities, the evidence of an 
effect was, however, inconclusive.

Some discrepancies of our results compared with previous 
studies can have multiple explanations. Previous studies reporting 
higher effect estimates had available coarser geographical reso-
lution (city or county level), leading to inadequate adjustment 
for confounding, as confounders, can vary in high geographical 
resolution.11 34 36 37 Differences in the definition of the outcome 
can also lead to the discrepancies as previous studies have used 
the apparent temperature,35 36 or diurnal temperature range,34 
while others, more in line with our approach, the daily mean.6 11 
Decisions regarding the selection of the temperature threshold, 
the warm- season months and the lags can also partly explain the 
observed difference in the effect estimates. Most previous studies 
adjusted for air pollution,6 35 36 while we did not, as we assumed 
that air pollution is a mediator28; when we added air pollution to 
model the effect of heat exposure was much reduced.

Acute COPD episodes are associated not only with airways 
and systemic inflammation but also with cardiovascular comor-
bidity and may be triggered by exposures to heat.36 Exposure to 
ambient heat can lead to heat dissipation through hyperventila-
tion and may trigger dynamic hyperinflation and dyspnoea in 
patients with pre- existing COPD.6 11 The higher risk of COPD 
hospitalisation in the 65–74 age group observed in our study 
could be explained by the inability of this frail population to 
dissipate excess heat through circulatory adjustment, and expo-
sure to extreme temperatures increases their risk of developing 
pulmonary vascular resistance secondary to peripheral pooling 
of blood or hypovolemia.36 In addition, older populations are 
of higher risk to have cardiovascular comorbidities, which are 
hypothesised to increase the risk of COPD hospitalisations 
associated with heat exposure. Nevertheless, such evidence 
is inconclusive.36 We also reported a weak protective effect of 
higher average temperatures, arguing towards protective adap-
tation to heat, possibly related to differences in housing stock 
or behaviour during hot weather.11 We observed weak evidence 
of increased resilience in populations in more deprived areas 
and in areas with higher degrees of urbanicity. Although this 
evidence is inconclusive, potential factors that could confound 
the observed effect include differences in demographics, for 
instance, ethnicity.

Previous studies examining future trends in COPD, popula-
tion demographics and temperature changes have predicted a 
higher COPD prevalence, a raise in the average age of the popu-
lation and increased global temperatures.38–40 Resources should 
be allocated to support the preparedness and resilience of public 
health systems, for instance, through developing or expanding 
heat- health alerts, to challenge the increasing heat exposure- 
related COPD hospitalisation burden.
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S1 Text

S1.1 Modelling relative humidity

S1.1.1 Model

Data on relative humidity in England during 1862-2019 is available nationwide from MetOffice through the

HadUK-Grid product (https://catalogue.ceda.ac.uk/). The spatial resolution of HadUK-Grid can vary

from 1km×1km to 60km×60km, nevertheless the highest temporal resolution available are months. MetOffice

also provides daily data on relative humidity during 1853-2019 for each meteorological station through the

Met Office Integrated Data Archive System (MIDAS) product (https://catalogue.ceda.ac.uk/). To retrieve

daily relative humidity data nationwide and not only at the meteorological stations, we employ the following

modelling framework:

Let Yjkt(s) be the arcsin transformation of the relative humidity from MIDAS and Xkt(s) the nationwide relative

humidity from HadUK-Grid in location s, day j, month k and year t:

Yjkt(s) ∼ Normal
(

µjkt(s), σ1

)

µjkt(s) = β0 + bXkt(s) + γj + ωt + u(s)

γj ∼ AR1(σ2, ρ)

ωt ∼ Normal(0, σ2

3
) (1)

u(s) ∼ GMRF(σ4, φ)

σ1, σ2, σ3, φ, ρ ∼ PCpriors

β0, b ∼ N(0, δ)

wheres µjkt(s) and σ1 be the variables of the normal distribution, β0 and b the regression coefficients, γj a random

effect capturing the daily temporal trends, ωt a random effect capturing the yearly trends, u(s) the spatial

autocorrelation term (based on the Stochastic Partial Differential Equation Approach [1]) and σ2, σ3, σ4, ρ, and φ

the corresponding variance and correlation hyperparameters.

The specification of the PCpriors of the hyperparameter is the following: for σ1 we specify that the probability of

observing arcsin relative humidity larger than 10 is 0.10. Similarly for σ2 and σ3, we specify that the probability

of observing arcsin relative humidity larger than 1 due to the temporal trends is 0.10. For the correlation

parameter ρ of the autoregressive process of order 1, we select a probability of 0.5 for correlations of 0.5 reflecting

our lack of knowledge with respect to the correlation structure in the data. For the Gauss Markov Random Field
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Figure 1.1. Predicted versus true values of the arcsin relative humidity for a sample of 10,000 values in the

summer months during 2007-2018 in England.

(GMRF) term we select the standard deviation hyperparameter σ4 as in the temporal case, whereas for the range

parameter φ we select ranges larger that 10km with probability of 0.5. For more information about the PCpriors

and their mathematical formulation see [2, 3]. Lastly, δ was fixed to 0.001 for the intercept, whereas to 0.1 for b.

S1.1.2 Cross-validation

We performed the following leave one out cross validation scheme: Let N be the total number of meteorological

stations during 2007-2019, first we divided N randomly by 10 groups, and for each (out of the 10) step we

excluded the entire time series of the group of the randomly sampled N/10 meteorological stations. Figure 1.1

shows the results of the cross validation, and in particular a scatterplot between the observed and predicted

values. The correlation between truth and predicted is relatively high, ie 0.66, indicating that our model have

good predictive ability.

S1.1.3 Results

Table 1.1 shows the results of Model 1, Figure 1.3 shows the mean of the daily median of relative humidity in

2013 for the 3 summer months. The maps show that areas around London had lower relative humidity during

the summer months in 2013. The relative humidity seems to be consistently higher in South West during the

5
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Table 1.1. Mean, standard deviation, median and 94% credible intervals of the intercept, the covariate and the

hyperparameters of Model 1.

Random variables mean sd median 2.5% 97.5%

β0 0.144 0.009 0.144 0.126 0.161

b 0.012 0.000 0.012 0.012 0.012

1/σ2

1
101 0.285 101 101 102

1/σ2

2
172 8.30 172.26 156.30 189

ρ 0.386 0.028 0.384 0.332 0.440

1/σ2

3
68.1 26.3 63.8 29.8 131

1/σ2

4
0.063 0.007 0.063 0.052 0.079

φ 8,384 1,557 8,352 5,493 11,600

Figure 1.3. Maps of mean of median relative humidity by summer month in 2013.

summer 2013.
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S1.2 Statistical analysis

In this subsection we will introduce the mathematical notation of the models used in the main analysis.

S1.2.1 WAIC analysis

Let Ytjk be the case-control identifier for the chronic obstructive pulmonary disease (COPD) hospitalisation

for the event (case or control) at time t, in the j-th case-control group and k-th patient. Let also X1t be the

temperature at t event Z1t, Z2t) a vector denoting the different confounders (relative humidity and holiday) at

the t-th time point. Then:

Ytjk ∼ Poisson(µitjk)

log(µtjk) = α1I(X1t < cl)X1t + α2I(X1t ≥ cl)X1t +
2

∑

m=1

βmZmt + uj + wk

uj ∼ N(0, 100)

wk ∼ N(0, σ2

1
)

a1, a2, β1, . . . β4 ∼ N(0, 1)

σ1 ∼ Gamma(1, 2)

In the above equation, a1 is the effect of temperatures lower than the threshold c, a2 is the effect of temperatures

higher or equal than the threshold c, I(·) an indicator function, β1, β2 the effects of the confounding, uj a fixed

effect on the j-th case control group and wk a random effect to account for recurrent hospitalisations. The

normal distributions read N(mean, variance). We ran the above model for the different temperature thresholds

cl for l = 1, 2, . . . , 10 representing the 50-th, 55-th, . . . 95-th percentiles of the temperature and computed the

WAIC [4]. Removing the term
∑

2

m=1
βmZmi and the corresponding priors of β1, β2 results in the unadjusted

models.

S1.2.2 Age-sex effect modification

Let c∗ be the temperature threshold that minimises the WAIC from Step 1. Expanding the indices of the above

model results in the models for the age and sex effect modification. Let g be the age-sex index representing

individuals aged 0− 64, 65− 74 and > 75 years old or the total group and males, females or the total group.

7
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The above model can be rewritten as follows:

Ytjkg ∼ Poisson(µtjkg)

log(µtjkg) = α1I(X1tg < c∗)X1tg + α2I(X1tg ≥ c∗)X1tg +
2

∑

m=1

βmZmtg + uj + wk

uj ∼ N(0, 100)

wk ∼ N(0, σ2

1
)

a1, a2, β1, . . . β5 ∼ N(0, 1)

σ1 ∼ Gamma(1, 2)

S1.2.3 Spatial effect modification

On the third step of the analysis we let the coefficient of the temperature higher than c∗ vary by lower tier local

authorities (LTLA). Let H1i, . . . , H8i) be the spatial effect modifiers representing the green space, the quintiles

of deprivation, the urbanicity categories and the average temperature in the s-th LTLA. We can write:

Ytjk ∼ Poisson(µtjk)

log(µtjk) = α1I(X1t < c∗)X1t + α2sI(X1t ≥ c∗)X1t +

2
∑

m=1

βmZmt + uj + wk

α2s = α2 +

8
∑

q=1

γqHsq + vs + bs

wk ∼ N(0, σ2

1
)

vs ∼ N(0, σ2

2
)

bs|b−s ∼ N

(∑

s∼r wrsbs
∑

s∼r wrs

,
σ2

3
∑

s∼r wrs

)

uj ∼ N(0, 100)

a1, β1, . . . β4, γ1, . . . , γ8 ∼ N(0, 1)

a2 ∼ N(0.0425, 0.00392)

σ1, σ2, σ3 ∼ Gamma(1, 2).

wrs are neighborhood weights and are 1 when the r and s LTLAs are neighboring (we write s ∼ r) and 0

otherwise, γ1, . . . , γ8 are the effects of the spatial effect modifiers and the vs+bs the BYM prior [5]. Unstructured

overdispersion is captured on vs and spatial autocorrelation on bs. The hyperparameters σ2

2
, σ2

3
are the variance

8
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parameters of the unstructured and structured random effects. Removing the term
∑

8

q=1
γqHsq and the

corresponding priors of γ1, . . . , γ8 results in the model without the adjustment for spatial effect modifiers, while

allowing the effect of warm temperatures to vary in space.

9
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S1.3 Confounders/ Mediators/ Effect modifiers

Directed acyclic graph for the relationship between temperature and hospitalisations for chronic obstructive

pulmonary disease (COPD).

Temperature COPD hospitalisation

Atmospheric
(un)stability

Relative
Humidity

National holidays

Z PM2.5, O3

age, sex, urban-
icity, IMD, green
space, temperature

• Relative humidity: Previous studies has reported an association between relative humidity and COPD

hospitalisations [6]. Relative humidity and temperature are both affected by factors such as atmospheric

(un)stability and climate dynamics. Nevertheless, (soil and air) humidity determines the fraction of

radiation (coming from the Sun and absorbed mainly by the surface) that is transformed into latent and

sensible heat. Latent heat is generated due to phase transition of water, e.g., evaporation. The remaining

radiation is transformed into sensible heat, leading to temperature changes [7]. Thus, relative humidity is

likely a confounder.

• National holidays: can affect individual behaviours with respect to seeking health care services but also

through other behaviours that can affect the temperature. Thus, holidays can be a potential confounder

[8].

• Air-pollution: Previous studies have reported an association between short term exposure to PM2.5 and

O3, and COPD hospitalisations [9, 10]. Thus these air-pollutants are expected to be correlated with COPD

hospitalisations. Although temperature and air-pollutants have their own causal factors, e.g. air pollution

emissions, they are also likely to have a shared cause Z, an example could be the already mentioned

atmospheric (un)stability and climate dynamics, and temperature to affect PM2.5 and O3 concentration

[11]. Thus, PM2.5 and O3 are likely to be mediators.

• Effect modifiers: The effect of temperature on COPD hospitalisations can be modified by, among other

10
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factors, age, sex, urbanicity, green space and average temperature. We selected these effect modifiers based

on 1. consistency with the literature [8] and 2. Clear hypotheses about the mediation: We included age as

the elderly have been reported to be more vulnerable, sex as differences can arise due to different lifestyle,

occupational or biological factors, averaged temperature to account for potential adaptation to higher

temperatures, urbanicity, to examine if urban heat island modifies the effect of temperature, and green

space. Green space may reduce health risks in urban populations by removing air pollution, reducing noise,

cooling temperature, enhancing physical activities, reducing psychological stress, and interaction with a

clean environment [12]. 3. As the main interest of the current analysis was spatial effect modification, we

did not include factors that vary significantly in time, such as air-pollution.
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Table S1: Mean, standard deviation (sd), median, interquartile range (IQR), min and max of maximum summer

temperature [oC] across England during 2007-2018.

year mean sd median IQR min max

2007 19.39 2.71 19.42 3.31 4.00 30.31

2008 19.63 2.90 19.39 3.47 6.35 30.20

2009 20.26 3.28 20.27 4.17 2.25 31.97

2010 20.49 3.25 20.38 4.28 6.41 32.83

2011 19.38 3.10 19.15 3.98 5.32 33.41

2012 19.05 3.42 18.89 4.27 2.83 33.05

2013 21.10 3.78 20.88 5.37 5.76 34.09

2014 20.63 3.16 20.53 4.33 6.38 32.30

2015 19.87 3.37 19.79 4.23 3.03 36.67

2016 20.46 3.36 20.31 4.09 5.26 34.21

2017 20.37 3.45 20.17 4.09 5.49 34.48

2018 22.42 3.98 22.20 5.86 4.98 35.66
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Table S2: Median and interquartile range (IQR) of the temperature [oC], daily mean PM2.5 [µg/m3], daily mean

of the 8 hours of maximum O3 [µg/m3] and relative humidity [%] across event, non-event days and the different

lags preceding the hospitalisation event.

Event days Non-event days

Covariate lag Median IQR Median IQR

Temperature 0 20.91 4.17 20.93 4.13

1 20.97 4.21 20.94 4.13

2 20.92 4.23 20.90 4.15

0-2 20.93 3.73 20.92 3.67

PM2.5 0 9.23 5.60 9.10 5.45

1 9.25 5.57 9.07 5.38

2 9.23 5.44 9.06 5.25

0-2 9.24 4.54 9.08 4.38

O3 0 65.5 22.37 65.00 21.91

1 66.08 22.68 65.37 21.82

2 66.21 22.35 65.58 21.78

0-2 65.94 19.45 65.31 18.81

Relative humidity 0 0.90 0.11 0.90 0.11

1 0.90 0.11 0.90 0.11

2 0.90 0.11 0.90 0.11

0-2 0.90 0.08 0.90 0.08
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Table S3: Mean, standard deviation (sd), median, interquartile range (IQR), min and max of daily mean PM2.5

[µg/m3] exposure across England during summers 2007-2018.

year mean sd median IQR min max

2007 8.71 5.51 7.47 5.13 0.10 76.97

2008 8.71 6.07 7.37 4.17 0.00 69.92

2009 8.81 4.55 7.48 4.14 1.15 62.24

2010 9.19 5.03 7.97 4.78 0.70 52.42

2011 9.20 4.50 8.03 4.41 0.87 71.39

2012 8.28 4.97 7.04 4.78 0.35 84.33

2013 10.42 7.12 8.20 8.26 0.00 75.41

2014 8.58 4.83 7.39 5.43 0.31 53.73

2015 7.86 4.88 6.75 5.79 0.03 44.60

2016 8.60 8.20 6.07 6.51 0.00 73.65

2017 8.05 6.04 6.20 6.20 0.00 65.88

2018 8.67 5.67 7.13 6.07 0.00 52.24

14

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Thorax

 doi: 10.1136/thoraxjnl-2021-218374–7.:10 2022;Thorax, et al. Konstantinoudis G



Table S4: Mean, standard deviation (sd), median, interquartile range (IQR), min and max of daily mean of the

8 hours of maximum O3 [µg/m3] exposure across England during summers 2007-2018.

year mean sd median IQR min max

2007 70.15 18.75 67.33 18.59 5.99 198.68

2008 71.32 18.91 69.35 21.86 0.19 166.95

2009 69.10 20.51 64.09 22.77 3.09 180.97

2010 68.11 19.87 64.57 23.99 12.07 157.44

2011 67.02 16.06 65.18 18.66 7.75 145.45

2012 63.28 17.56 62.02 19.81 0.19 182.54

2013 71.60 19.99 69.04 23.01 0.00 186.98

2014 71.28 15.92 69.64 19.41 6.91 150.06

2015 71.69 17.33 69.33 21.35 2.09 177.66

2016 64.46 17.90 60.38 20.44 0.86 162.83

2017 63.17 17.04 60.39 18.88 12.31 246.06

2018 71.78 22.37 67.24 32.10 16.28 268.69
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Table S5: Mean, standard deviation (sd), median, interquartile range (IQR), min and max of daily median of

relative humidity [%] exposure across England during summers 2007-2018.

year mean sd median IQR min max

2007 0.94 0.05 0.95 0.08 0.49 1.00

2008 0.93 0.06 0.95 0.09 0.51 1.00

2009 0.93 0.06 0.94 0.09 0.43 1.00

2010 0.91 0.07 0.93 0.12 0.46 1.00

2011 0.92 0.06 0.93 0.09 0.50 1.00

2012 0.96 0.05 0.97 0.06 0.54 1.00

2013 0.91 0.07 0.92 0.10 0.45 1.00

2014 0.91 0.06 0.91 0.09 0.50 1.00

2015 0.90 0.07 0.91 0.11 0.47 1.00

2016 0.94 0.06 0.95 0.08 0.50 1.00

2017 0.93 0.06 0.94 0.08 0.49 1.00

2018 0.88 0.09 0.90 0.14 0.37 1.00
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Table S6: Percentage hospitalisation risk of COPD for every 1oC increase in summer temperature using the

model adjusted for relative humidity and national holidays and the different temperature thresholds c.

quantile threshold c (oC) WAIC Effect bellow c Effect above c

50 20.6 2,257,389 0.12 (-0.22, 0.46) 1.56 (1.26, 1.84)

55 21.0 2,257,373 0.12 (-0.23, 0.48) 1.56 (1.26, 1.86)

60 21.3 2,257,371 0.16 (-0.21, 0.49) 1.53 (1.24, 1.81)

65 21.7 2,257,379 0.21 (-0.12, 0.57) 1.50 (1.21, 1.78)

70 22.1 2,257,333 0.22 (0.10, 0.55) 1.49 (1.22, 1.77)

75 22.6 2,257,331 0.37 (0.05, 0.65) 1.42 (1.15, 1.68)

80 23.2 2,257,273 0.37 (0.09, 0.65) 1.46 (1.19, 1.71)

85 23.8 2,257,330 0.44 (0.18, 0.70) 1.46 (1.20, 1.72)

90 24.9 2,257,440 0.62 (0.38, 0.86) 1.39 (1.11, 1.66)

95 26.5 2,257,351 0.72 (0.49, 0.93) 1.50 (1.20, 1.82)
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Table S7: Median and 95% credible intervals of the % risk COPD hospitalisation for every 1o increase in warm

temperatures by age group and sex. RH+NL refers to adjustment for relative humidity and national holidays,

whereas RH+NL+POL for additional adjustment for PM2.5 and O3.

Sex Age group Unadjusted models RH+NL RH+NL+POL

Males 0-64 0.97 (0.24, 1.73) 1.32 (0.57, 2.06) 0.64 (-0.24, 1.49)

Females 0-64 0.92 (0.25, 1.63) 1.14 (0.39, 1.84) -0.04 (-0.90, 0.84)

Total 0-64 1.00 (0.51, 1.48) 1.28 (0.75, 1.82) 0.35 (-0.26, 0.98)

Males 65-74 1.13 (0.50, 1.71) 1.39 (0.74, 2.03) 0.62 (-0.15, 1.39)

Females 65-74 1.56 (0.94, 2.20) 1.75 (1.13, 2.41) 0.76 ( 0.01, 1.52)

Total 65-74 1.31 (0.83, 1.70) 1.54 (1.07, 2.03) 0.66 ( 0.13, 1.22)

Males >75 1.41 (0.87, 1.91) 1.51 (0.98, 2.07) 0.25 (-0.35, 0.92)

Females >75 1.29 (0.79, 1.83) 1.51 (0.94, 2.06) 0.47 (-0.14, 1.11)

Total >75 1.36 (0.96, 1.71) 1.49 (1.11, 1.89) 0.38 (-0.10, 0.84)

Males Total 1.23 (0.89, 1.59) 1.45 (1.10, 1.83) 0.51 ( 0.07, 0.94)

Females Total 1.26 (0.93, 1.62) 1.46 (1.09, 1.82) 0.41 (-0.03, 0.84)

Total Total 1.24 (0.98, 1.51) 1.47 (1.19, 1.73) 0.47 ( 0.16, 0.75)
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Figure S1: Boundaries of the 326 Lower Tier Local Authorities of England in 2015 (median size: 208km2).
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Figure S2: The spatial distribution of the index of multiple deprivation using quintiles in 2015 in England at the

lower tier local authority level. Q1 indicates the most deprived areas.
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Figure S3: The spatial distribution of urbanicity in based on the Office for National Statistics classification in

2011 at the lower tier local authority level.
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Figure S4: The quintiles of the spatial distribution of the proportion of a lower tier local authority that is covered

by green land such as woodland, agricultural land, grassland and other natural vegetated land as classified in

the Land Cover Map 2015.
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Figure S5: The spatial distribution of the average temperature [oC] by lower tier local authority during 2007-2018

in England.
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Figure S6: Relative hospitalisation risk (relative to the risk at 18oC) using 3rd degree of b-splines at 3 knots and

the model with total age and sex and adjusted for national holidays and relative humidity. The red dashed line

indicated the threshold c used throughout the study.
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