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12
13 Abstract

14 Surveillance systems are commonly used to provide early warning detection or to 

15 assess an impact of an intervention/policy. Traditionally, the methodological and 

16 conceptual frameworks for surveillance have been designed for infectious diseases, 

17 but the rising burden of non-communicable diseases (NCDs) worldwide suggests a 

18 pressing need for surveillance strategies to detect unusual patterns in the data and to 

19 help unveil important risk factors in this setting. Surveillance methods need to be able 

20 to detect meaningful departures from expectation and exploit dependencies within 

21 such data to produce unbiased estimates of risk as well as future forecasts. This has 

22 led to the increasing development of a range of space-time methods specifically 

23 designed for NCD surveillance.

24 We present an overview of recent advances in spatio-temporal disease surveillance 

25 for NCDs using hierarchically specified models. This provides a coherent framework 

26 for modelling complex data structures, dealing with data sparsity, exploiting 

27 dependencies between data sources and propagating the inherent uncertainties 

28 present in both the data and the modelling process. We then focus on three commonly 

29 used models within the Bayesian Hierarchical Model (BHM) framework and through a 

30 simulation study we compare their performance.
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31 We also discuss some challenges faced by researchers when dealing with NCD 

32 surveillance, including how to account for false detection and the modifiable areal unit 

33 problem. Finally, we consider how to use and interpret the complex models, how 

34 model selection may vary depending on the intended user group and how best to 

35 communicate results to stakeholders and the general public.

36 Keywords: surveillance, non-communicable diseases, Bayesian hierarchical models, 

37 spatio-temporal modelling.

38

39 Key messages

40 - There is increasing recognition of the importance of surveillance for NCDs.

41 - Spatio-temporal variation in health outcomes and lifestyle and environmental 

42 exposures needs to be explicitly modelled in order to reduce bias and 

43 uncertainty.

44 - Hierarchical modelling provides a coherent framework within which spatio-

45 temporal dependencies can be explicitly modelled with integration of the 

46 uncertainties associated both with the data and the modelling process.

47 - In a simulation study, we found that mixture models designed for detection 

48 perform better than standard disease mapping models. However, attention 

49 should be paid to the choice of threshold as this impacts the results. It is 

50 recommended that a simulation study based on the characteristics of the data 

51 in hand is run each time for the selection of suitable threshold values.

52 - Current research challenges in this area include: the use of data from multiple 

53 sources at different spatial and temporal scales and with different sources of 

54 bias and uncertainty; computationally intense processes; and control for false 

55 positive findings. 
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56

57 1. The importance of non-communicable diseases

58 According to the World Health Organization surveillance is the “ongoing systematic 

59 data collection, analysis, interpretation and dissemination of information in order for 

60 action to be taken” [1]. National public health agencies, such as the US Centers for 

61 Disease Control and Prevention (CDC) and Public Health England (PHE) routinely 

62 carry out surveillance data analysis to provide early warnings of unexplained changes 

63 in incidence patterns of diseases as well as to aid policy formation and resource 

64 allocation [2]. Specific examples include the international influenza monitoring system 

65 which started in 1948 and is now distributed in 82 countries [3], the HIV and AIDS 

66 Reporting System (HARS) used by PHE [4] and the National HIV Surveillance System 

67 used by CDC [4].

68 To date, the majority of methods and models commonly used in public health 

69 surveillance are designed for monitoring cases of infectious diseases [6]. Due to the 

70 rising burden of non-communicable diseases (NCDs) worldwide, there is a pressing 

71 need to implement surveillance strategies to detect trends, highlight unusual changes 

72 and consequently assist in outlining emerging NCD risk factors. NCD surveillance 

73 shares many objectives with infectious disease surveillance, including generating 

74 information to guide public health action, detecting the health impact of environmental 

75 exposures, or of environmentally driven disease vectors; however, it also presents 

76 some different methodological challenges [7, 8].

77 Health data contain both a time and a space component. Surveillance methods must 

78 be able to capture spatial and temporal patterns in both lifestyle/environmental 

79 exposures and health outcomes. Here, we present an overview of the approaches 

80 developed for spatio-temporal disease surveillance of NCDs. We focus on model-
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81 based methods and among these on Bayesian hierarchical models (BHMs), which can 

82 naturally accommodate complex data structures, as well as propagate uncertainty due 

83 to the data themselves and the modelling process. 

84 In this Section, we first discuss how data availability is one of the key challenges in 

85 surveillance studies, before giving a generic overview of  test-based approaches for 

86 NCD surveillance. We then focus on BHMs (Section 2) and describe disease mapping 

87 and mixture-based models for anomaly detection. In Section 3, we  introduce the 

88 computational aspects of the BHM modelling framework for NCD surveillance, while 

89 in Section 4 we run a simulation study to evaluate advantages and drawbacks of the 

90 approaches presented in detecting areas deviating from the expected trend. Finally, 

91 in Section 5 we conclude with a summary and some remaining discussion points.

92

93 1.1 Data availability

94 One of the major challenges of surveillance studies is the availability of suitable data. 

95 This applies to both infectious disease and NCD surveillance. It is a particularly 

96 important issue in low-income settings because surveillance studies often need to rely 

97 on information from surveys, and the lack of financial resources may make 

98 comprehensive coverage of data sources (e.g. mortality/cancer registries) over an 

99 entire country infeasible [9].

100 In the last 15 years, a number of Health and Demographic Surveillance Systems 

101 (HDSS) have been established in low-income settings to provide a reliable source of 

102 health data and are now linked together through the International Network for the 

103 Continuous Demographic Evaluation of Populations and Their Health (INDEPTH, [10]). 

104 Such continuous surveys are an invaluable source of data, but researchers face issues 

105 related to population representativeness. A recent study proposed a Bayesian 
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106 probabilistic clustering method to evaluate the network representativeness in terms of 

107 socio-economic and environmental variables in sub-Saharan Africa, identifying areas 

108 of poor coverage in the existing network and using predictive probability distributions 

109 to suggest the best location for new HDSS sites [11].

110 Even in high income settings where administrative resources are available for the 

111 entire population, there may be issues regarding the population at risk, used as 

112 denominator in the risk estimates. In small-area studies on mortality or hospital 

113 admissions, the denominator is usually the resident population in each administrative 

114 area, typically estimated from national census statistics, but there may be estimation 

115 problems for inter-censual years. In addition, it is not straightforward to define the 

116 denominator where the interest is for less-defined geographies, such as the catchment 

117 areas of clinical centres (e.g. general practices in England).

118 Furthermore, the availability of administrative or health data may become more limited: 

119 for instance, within the UK National Health Service, patients can now decide not to 

120 share their medical records for research purposes. This clearly impacts on spatial 

121 coverage and could potentially lead to biased statistical inference if the data gaps are 

122 clustered in space and/or if they differentially affect specific population groups (e.g. 

123 elderly, more deprived) [12].

124

125 1.2 Test-based methods

126 Methods for NCD surveillance have largely been based around the idea of detecting 

127 whether the outcome of interest shows a particular behaviour in a defined subset (e.g. 

128 an area, period of time, or combination of space and time) when compared to the 

129 whole study region. Perhaps the most popular test-based methods used for NCD 

130 surveillance are the scan statistics. These were developed originally in the temporal 
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131 setting only [13]; here, a fixed length “scanning window” is passed over the time-series 

132 data with the number of cases in the window being recorded. A log likelihood ratio 

133 (LLR) is calculated for each interval, and the test statistic is defined as the maximum 

134 LLR over all intervals. This idea was extended to a spatial version of the scan statistic 

135 [23, 15], which was later further extended to the spatio-temporal setting [16]. In this 

136 case, the scanning window is represented by a cylinder, where the diameter specifies 

137 the spatial dimension and the height the temporal dimension. An additional version of 

138 spatial scan statistic was proposed to account for correlation across spatial units which 

139 was not considered before [17]. Scan statistics have been extensively applied to 

140 numerous health care applications. Part of their popularity lies in the availability of free 

141 user-friendly SaTScanTM software (https://www.satscan.org/). Recent applications of 

142 SaTScan include the identification of signals for colorectal cancer [18], drug activity 

143 [19], criminality [20], and bat activity [21].

144 A further development has been the detection of spatial variations in temporal trends 

145 (SVTT). These methods extend the scan statistics to estimate the time trend via a 

146 regression-based model specifying either a linear or a quadratic function. The 

147 quadratic SVTT method has, for example, been applied to cervical cancer data in 

148 women in the US from 1969 to 1995 highlighting areas where the risk was significantly 

149 different from the rest [22].

150 Test-based methods such as scan statistics can only answer questions related to the 

151 deviation from the null hypothesis. An alternative approach is to explicitly model the 

152 spatio-temporal structure in the data and to assess whether differences between 

153 observed data and those predicted from the model provide evidence of anomalies. 

154 There are a number of advantages to adopting a model-based approach over a test-

155 based method including the ability to: (i) have more statistical power to handle sparsity 
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156 in the observed disease counts; (ii) explore more subtle departures from the 

157 expectation; (iii) account for the spatial and temporal correlation that is typically evident 

158 in health data; (iv) “borrow” information over space and time, therefore increasing the 

159 precision of the estimates generated; (v) include covariates that might explain some 

160 of the spatio-temporal variability.

161 2. Hierarchical models and likelihood-based inference

162 Hierarchical models (HM) are able to deal with complex data structures, to exploit 

163 dependencies between data sources and to propagate the inherent uncertainties that 

164 are present in both the data and the modelling process. In the current context, an HM 

165 combines two elements: a process model that describes how disease risk varies over 

166 space and time, typically involving both extant covariate effects and a latent spatio-

167 temporal stochastic process; and a data model that describes the statistical properties 

168 of the available health outcome data conditional on the realisation of the underlying 

169 risk process. Both elements are specified up to the values of a set of unknown 

170 parameters, which can be estimated by Bayesian or non-Bayesian versions of 

171 likelihood-based inference, typically implemented using Markov chain Monte Carlo 

172 integration and Monte Carlo likelihood maximisation methods, respectively. In addition 

173 to estimating parameters, the scientific goals of health surveillance include prediction 

174 of relevant properties of the unobserved risk surface as it evolves in real-time. 

175 Parameters and latent stochastic processes are fundamentally different things, but 

176 within the Bayesian paradigm they are both treated as unobserved sets of random 

177 variables, and the operational calculus of estimation and prediction coalesces. In what 

178 follows, we use BHM (Bayesian Hierarchical Modelling) as a shorthand for Bayesian 

179 inference applied to a hierarchically specified model.

180
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181 2.1 Space-time disease mapping

182 A class of BHMs that has been extensively used for the analysis of NCD data are the 

183 so-called disease mapping models (DM). These are hierarchical models in which the 

184 latent component of area-level disease risk is modelled as a spatially discrete Markov 

185 random field [23] and, depending on the sampling design, the conditional distribution 

186 of area-level case-counts is Poisson or Binomial [24, 25, 26, 27]. While the objectives 

187 of these are descriptive, they have been used as the basis for the development of 

188 detection models, which are framed in a surveillance perspective. Disease mapping 

189 models have been extensively used to estimate and visualise the spatial or spatio-

190 temporal distribution of a disease (see for instance [9, 21, 28]).

191 Spatial dependence in the latent component of a DM is modelled by specifying 

192 neighbourhood relationships amongst the area-level risks, the most widely used 

193 definition being that two areas are neighbours if they share a common boundary. A 

194 common choice for capturing temporal dependence is a random walk prior [29], but 

195 extensions to incorporate spatio-temporal interactions among neighbouring areas and 

196 time points have also been developed [30]. This framework can also account for 

197 factors known to modify spatial and temporal trends that, in the context of NCDs, will 

198 include demographic variables (e.g. age/sex/ethnicity) and social economic status. 

199 Random effects can be assigned for each factor (with appropriate priors) and for 

200 interactions if required. An example is provided by Goicoa et al. [31] who proposed a 

201 space-time-age model to study prostate cancer incidence across 50 provinces in 

202 Spain for 9 age groups over 25 years, accounting for all pair-wise interactions. The 

203 authors used ranking of all provinces according to mortality rates to identify high-risk 

204 groups.
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205 A key characteristic of BHMs is the ready availability of joint posterior/predictive 

206 distributions for parameters/latent processes and whatever of their properties are 

207 relevant to the public health questions of interest. In the context of disease mapping 

208 this leads to a spatial, temporal and spatio-temporal risk distribution that researchers 

209 can map, both in terms of point estimates but also of associated measures of 

210 uncertainty. For the latter, a common choice is the predictive probability that the 

211 relative risk exceeds a pre-specified threshold [32, 33]. Exceedance probabilities can 

212 be used to flag areas and/or time points characterised by increased risk that may then 

213 be further investigated. In this way, disease mapping, though not formally a 

214 surveillance method, can be used as a descriptive tool for the identification of areas 

215 and/or time periods with marked deviation from expectation. It is important to note that 

216 the strong smoothing effect of disease mapping models leads to conservative risk 

217 estimates, hence to a small number of false positive findings, at the expense of a low 

218 power for detecting high risk areas with low signal. To minimise that, an extensive 

219 simulation was run to find the best threshold on the exceedance probability scale to 

220 classify an area as high risk [33]. The authors showed that a good trade-off between 

221 false-positive and false-negative rates is achieved with a probability above 0.8 for a 

222 relative risk to be higher than 1, however this largely depends on the number of 

223 expected counts, the number of areas and time points, and the spatial risk [34].

224 As an example of the typical disease mapping output, Figure 1 shows the incidence 

225 of malignant melanoma in males, at the census ward level in England and Wales over 

226 the period 1985-2009 from the Environmental and Health Atlas produced by the UK 

227 Small Area Health Statistics Unit (SAHSU) [35]; the map on the left presents the spatial 

228 distribution of the posterior relative risk mean estimates, while the map on the right 
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229 plots the posterior probability that the corresponding relative risk is above 1, using the 

230 categorisation suggested in [33].

231 Figure 1 here

232 Disease mapping models can be extended to two or more outcomes that might share 

233 spatial (and temporal) patterns, for instance due to common risk factors. A joint model 

234 allows information to be borrowed across the outcomes, thus helping stabilise 

235 estimates, particularly when the outcomes are rare. The shared component model [36], 

236 originally developed for two diseases, includes a common component (likely to reflect 

237 common risk factors), and a disease-specific one, which can point towards specific 

238 risk factors otherwise masked in a single disease model. It was applied to male and 

239 female lung cancer [37] and later extended to jointly model multiple diseases [30, 38], 

240 with an application on oral cavity, oesophagus, larynx and lung cancers in males in 

241 the 544 districts of Germany from 1986 to 1990. Recently, it was further extended to 

242 jointly model age- and gender-specific diseases [39]. 

243 An alternative multivariate specification considers spatial and temporal terms explicitly, 

244 modelling the correlation among the outcomes in space/time. As an example, road 

245 traffic accidents characterised by different severity were analysed over the period 

246 2005-2011 at the ward level in England while detection of high-risk areas was 

247 performed using exceedance probabilities of the area ranks based on accident rates 

248 [40].

249

250 2.2 Space-time anomaly detection

251 The standard disease mapping approach has been used informally to detect 

252 anomalies (unusual observations) in space and time, i.e. areas and/or time points with 

253 trends different to the expected ones, adding a space-time interaction parameter into 
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254 the latent process [37]. The detection of anomalies may indicate the presence of an 

255 emerged localised risk factor, the impact of an intervention, or differences in the quality 

256 of data, such as misdiagnosis of a disease, and under- or over-reporting of cases. 

257 Mixture models have been proposed as a formal approach to anomaly detection. In 

258 particular, Abellan et al. [41], developed a BHM model (termed STmix) where a mixture 

259 of two normal distributions characterised by different variances is specified for the 

260 space-time interaction. Then, the interaction is used to classify areas as common and 

261 unusual. The authors performed a simulation study to compare the method against 

262 the standard disease mapping approach. The results of the simulation study showed 

263 that the standard approach was not able to capture the variability in the spatio-

264 temporal interactions and therefore it was not able to distinguish between common 

265 and unusual areas. This is due to the excessive smoothing following the assumption 

266 of a common variance across all the areas and time points. STmix was applied to 

267 mammography screening data in Brisbane, Australia, at the statistical local area (SLA) 

268 level, from 1997 to 2008 in order to identify SLAs whose temporal trend exhibited 

269 volatility [42]. A well-known drawback of this approach is its limitation to incorporate 

270 specific time patterns, for example step changes that could signal the emergence of a 

271 new risk factor.

272 Another mixture model, proposed by Li et al. [43], accommodates this issue. Here, the 

273 mixture specification of the method is defined directly on the relative risks in space 

274 and time, to allow for detection of areas with unusual time trends rather than space-

275 time deviations. In particular, two alternative models are considered: the first one 

276 assumes a global time trend for all areas (common trend), while the second estimates 

277 a time trend for each area independently (area-specific trend). Through a simulation 

278 study the authors showed better performance in terms of both sensitivity and 

Page 11 of 29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

12

279 proportion of false positives compared to SaTScan on a wide range of scenarios. This 

280 approach, named BaySTDetect, was applied to detect unusual trends for asthma and 

281 chronic obstructive pulmonary disease at Clinical Commissioning Group (CCG) level 

282 in England (211 in total) on monthly data between August 2010 and March 2011 

283 across mortality, hospital admissions, and general practice drug prescriptions [44].

284 To illustrate the typical output obtained from this model, Figure 2 shows the area-

285 specific time trends of the CCGs that were detected as unusual plotted against the 

286 national trend. Other applications of this method include burglary data [45], gray whale 

287 abundance [46] and mammography data [42].

288 Figure 2 here

289 This method was further extended to increase its flexibility by accounting for different 

290 space-time patterns in the unusual observations, as well as by allowing for longer time 

291 series to be analysed. This improved method, termed FlexDetect, had a better 

292 performance when compared to the original method through an extensive simulation 

293 study [47].

294 Multiple testing

295 As surveillance studies involve evaluating trends for different health outcomes, many 

296 areas and different time periods at the same time, false detections are likely to occur 

297 by chance. Bonferroni correction has been extensively used in epidemiology to correct 

298 for multiple testing, particularly in omics studies [48, 49], but it is well known that this 

299 approach leads to conservative results. Benjamini and Hochberg first introduced an 

300 alternative index, the false discovery rate (FDR) [50], as the expected value of the rate 

301 of false positive findings among all rejected hypotheses and used it in a frequentist 

302 approach. The same method was suggested in the context of descriptive spatial 

303 epidemiology, to obtain areas characterised by a Standardised Mortality Ratio different 
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304 from 1 [51]. Even in the Bayesian setting, FDR rules were suggested by many authors 

305 [52, 53, 54, 55, 56]. The mixture model proposed by Li et al. uses the specification 

306 suggested by Newton et al. [53] later used by Ventrucci et al. [57] in order to account 

307 for multiple testing. The authors base the FDR statistic on the posterior model 

308 probability, which represents the likelihood of the space-time unit investigated to follow 

309 the common trend model, i.e. to exhibit a risk pattern not deviating from the expected 

310 one [43].

311 While the importance of controlling for multiple testing is clear in classical significance 

312 testing, the analogous problem in predictive setting is less of a concern [58]. One 

313 reason for this is that local predictions from hierarchical models are naturally smoothed 

314 towards the global mean, making these consequently less prone to false positive 

315 findings than unsmoothed area-by-area interval estimates. Another is that the Monte 

316 Carlo sampling method allows the computation of whatever joint probability statements 

317 are required. For example, if the public health question is whether current risk exceeds 

318 an agreed acceptable level in all areas that do, and in no areas that do not, meet a 

319 particular criterion such as adherence to a particular advisory policy, the correct 

320 predictive probability to attach to this statement can be calculated.

321 3. Computational aspects

322 One of the biggest challenges researchers face when analysing large and complex 

323 space-time datasets is their computational burden. This applies particularly in the 

324 small-area context, where the number of space-time units investigated can vary 

325 substantially depending on the chosen spatial and temporal resolution, from few 

326 hundreds to hundreds of thousand units, particularly when several outcomes are jointly 

327 analysed (for instance Foreman et al. [59] considered jointly deaths/age/sex specific 

328 space-time trends in the U.S). 
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329 The degree of complexity of the model (e.g. the number of parameters) also impacts 

330 on the computational burden, for instance in terms of convergence time when running 

331 MCMC simulations. Under the Bayesian paradigm, the choice of the prior will also 

332 influence convergence; an informative prior, assuming that there is no conflict with the 

333 data, will normally speed up convergence, while a vague prior will most likely lead to 

334 longer time to reach convergence. Finally, the choice of software used for the analysis 

335 will affect the model running time. The user-friendly software BUGS (Bayesian 

336 inference Using Gibbs Sampling) [60] has been traditionally used for Bayesian 

337 inference using MCMC methods, however it can be slow when high dimensional data 

338 and/or complex models are used. Other MCMC-based methods, such as Stan [61] 

339 and NIMBLE [62], are currently attracting attention due to their active development 

340 community. An alternative way of dealing with computational limitations is to use 

341 approximative methods; for instance INLA (integrated nested Laplace approximations) 

342 [63] has been successfully used for running space-time disease mapping models (e.g. 

343 [31, 64]); however, this method is somewhat less flexible than the aforementioned 

344 ones and as it relies on Normality of the latent process is not able to deal with mixture 

345 distributions. 

346 Computationally intensive BHMs benefit from high-performance computing clusters to 

347 speed up computation times, however these are not necessarily required. For instance 

348 in [40] road traffic accidents data of different severity in England were analysed 

349 simultaneously at the ward level (~8000), over 9 years (for a total of around 150,000 

350 units and 32,000 parameters); the analysis was run in OpenBUGS and took 20 to 27hr 

351 on an Intel Core processor at 3.40 GHz with 8 Gbytes of random-access memory. On 

352 a much bigger scale, a US small area study considered more than half a million units 
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353 and nearly 6,000 parameters [59]; the analysis was implemented in Stan using higher 

354 performance computing (HPC) clusters for faster calculations. 

355 4. Simulation-based example

356 Considering the multitude of space-time methods available, as described above, it is 

357 important to formally evaluate their respective detection performance. In this paper we 

358 carried out a simulation study to formally evaluate the detection performance and 

359 compare DM, STmix and FlexDetect (see description of the models in Section 2.2). 

360 Following the design initially proposed by [43], and later used by [47], we used real 

361 asthma hospital episode statistics (HES) data to generate 50 simulated datasets. The 

362 asthma dataset was obtained from SAHSU, Imperial College London and consisted of 

363 disease counts across 211 Clinical Commissioning Groups (CCG) in England for 15 

364 months, from January 2010 to March 2011. The 50 simulated datasets were generated 

365 to closely resemble the patterns seen in the real dataset. A standard spatio-temporal 

366 model [27] was first fitted to the real data and the obtained parameters were selected 

367 for the generation of the simulated data. We selected 15 areas to deviate from the 

368 overall time trend over the last 5 time points. For these 15 areas, we selected the 

369 signal to be increased by log(2) for time points 3 and 10, and decreased by log(2) for 

370 time points 6, 12 and 15 out of the total 15 time points. In this way, we ensured that a 

371 realistic scenario was used (for more details see [47] Supplementary materials, 

372 Scenario 1). The R code used for the data simulation, together with the three models 

373 written in BUGS can be found on https://github.com/aretib/bayesSTmodels.git.

374 The results are presented in Table 1 in terms of four different performance measures. 

375 We defined TP as the number of true positives, FP as false positives, TN as true 

376 negatives and FN as false negatives respectively. Sensitivity measures the ability of 

377 the model to correctly classify an unusual observation as such, defined as TP/(TP+FN), 
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378 and similarly specificity measures the ability of the model to correctly classify a 

379 common observation as such (TN/(TN+FP)). In addition, it is crucial to control the 

380 proportions of observations that are falsely classified as unusual (false discovery rate 

381 (FDR)) and common (false omission rate (FOR)) respectively; these should typically 

382 not exceed a value of 0.05, specified based on the standard p-value threshold. We 

383 consider (i) two different thresholds for DM: 0.8 as commonly used and previously 

384 described (DM1); a more conservative threshold of 0.9 (DM2), under the assumption 

385 that false positives are more important to minimise than false negatives, and (ii) two 

386 different rules for STmix as presented in the original paper: an area is modified if at 

387 least for one time point the space-time interaction has a probability greater than 0.8 to 

388 be above 1 (STmix1); an area is modified if for at least three time points the space-

389 time interactions have an average probability greater that 0.8 to be above 1 (STmix2).

390 Table 1 here

391 As can be seen, the disease mapping approach using the standard threshold of 0.8 

392 on the posterior probability scale (DM1) shows the worst performance; as expected 

393 the method is able to detect nearly all unusual areas, with a sensitivity of 0.979; 

394 however, roughly 79% of the detected findings are not actually unusual (FDR = 0.785) 

395 (Table 1). Fixing a 0.9 threshold (DM2), FDR decreases, despite still being above the 

396 standard threshold of 0.05, while at the same time sensitivity also decreases (0.660) 

397 (Table 1).

398 The two mixture models returned more comparable performances. STmix1 gave no 

399 false positive results (FDR = 0) and a sensitivity of 0.773, while for STmix2 sensitivity 

400 increased to 0.969, but at the same time a much higher proportion of false positive 

401 was detected (FDR = 0.220). The results of FlexDetect provided a balance between 
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402 the two extremes, giving a proportion of FDR equal to 0.019 and a sensitivity of 0.796. 

403 In terms of specificity and FOR, both STmix and FlexDetect behave similarly. 

404 Differences across the competing models were observed in terms of computation time, 

405 an important factor in assessing their performance. All models were run in an Intel 

406 Xeon Core processor 3.40GHz with 125GB RAM. Each of the 50 simulations took on 

407 average 33.4 mins for models DM1 and DM2, 39.2 mins for models STmix 1 and 

408 STmix2 and 66.8 mins for FlexDetect. The simulation results suggest that using 

409 disease mapping (DM) for surveillance purposes is not appropriate and that one of the 

410 mixture models designed for detection should be used instead. Between STmix and 

411 FlexDetect it is worth mentioning that STmix can only identify areas where anomalies 

412 are present, and not the time points when these occur. In addition to this, its detection 

413 mechanism does not consider specific patterns in the time trends. These can be 

414 accommodated by FlexDetect, which however is more computationally intensive. Also 

415 note that mixture models notoriously have problems converging, suffering from issues 

416 such as label switching, which lead to multimodal posterior distributions. Both the 

417 detection methods deal with this through the modelling specification, such as [41] 

418 constraining the variance of the modified areas to be larger than that of unmodified 

419 areas, or through informative priors on the variances of the two components [43].

420 5. Discussion

421 In this paper we have presented an overview of the main statistical methods for 

422 disease surveillance in the context of NCDs, both from a test-based and model-based 

423 perspective and with a particular focus on the BHM approach, which provides a flexible 

424 framework to allow for complex data dependencies present in surveillance studies. 

425 Through a simulation study we showed that disease mapping is not satisfactory when 

426 looking for data anomalies, while the two methods based on mixture models provide 
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427 a better compromise between detecting areas characterised by a deviation from the 

428 expected trend and limiting false positives. Note that our perspective is on methods 

429 that detect single areas, rather than clusters of adjacent spatial units. If the interest 

430 lays on detection in the presence of spatial proximity, recent methods have been 

431 developed to combine clustering with spatial smoothing, see for example [65] and [66].

432 An interesting aspect of the general hierarchical framework presented is that it can 

433 easily incorporate forecasting of the disease risk, which is relevant in the context of 

434 epidemiological surveillance to evaluate the need for resources/policies/costs in 

435 specific areas and future time points. Some work in this area includes Foreman et al., 

436 [59] who, using annual vital statistics for 1974-2011 at the US state spatial resolution, 

437 forecasted mortality up to 2024, while Ugarte et al. [67] used P-splines to forecast 

438 cancer mortality counts in Spanish regions for 2009-2011 using data from 1975-2008. 

439 Most of the work presented is based on routinely collected data for retrospective 

440 studies. However, there is increased importance of early warning detection, so that 

441 unusual behaviour can be detected at the earliest possible time. Syndromic data, such 

442 as primary care data, drug prescriptions, nurse calls and home visits, which are 

443 indicative of a potential anomaly, may provide an additional level of information leading 

444 to a detection event before the data aberration occurs [68]. Diggle et al. [69, 70] 

445 analysed NHS non-emergency telephone calls reporting symptoms of gastrointestinal 

446 diseases. The authors specified a spatio-temporal point process on the location and 

447 time of the individual calls and modelled the spatial and temporal dependency on the 

448 intensity of the process. They used exceedance probabilities to define maps of 

449 potential outbreaks. Another example can be found in Morrison et al. [71] 

450 who forecasted multiple measures of healthcare utilization (including physician visits 

451 and prescriptions of asthma medication) within British Columbia, Canada, where 
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452 seasonal wildfires produce high levels of air pollution, significantly impacting 

453 population health. Here, the focus was on efficient, near real-time, computation which 

454 was achieved using INLA to perform approximate Bayesian inference.

455 Potentially syndromic information can also be linked with routine data such as Hospital 

456 Episode Statistics and provide predictors in order to obtain a better description of the 

457 data and more accurate one-step-ahead forecasts. Lately work has been done to take 

458 advantage of the rich data from social media in a surveillance perspective. For 

459 instance, Dai et al. [72] linked tweets with the American Community Survey and the 

460 Behavioral Risk Factor Surveillance System to study asthma prevalence at the State 

461 level in the US. The authors claimed that the inclusion of social media data could be 

462 a cost-effective real time health detection system. However, there may be challenges 

463 in future due to selective data availability following perceived concerns about data 

464 security and confidentiality, as demonstrated by the newly implemented NHS National 

465 Data Optout Programme. This will potentially lead to bias in population 

466 representativeness due to non-random missingness [12] which will need to be 

467 addressed using advanced statistical methods, for instance through the integration of 

468 data from appropriate surveys / cohorts, as proposed in the context of residual 

469 confounding [73].

470 An important issue with surveillance studies is that of the spatial resolution and the 

471 type of geographical areas considered; modifying these might lead to different results, 

472 as the spatial distribution of the outcome will depend on these choices. For instance, 

473 if within-area variability is substantial, results from statistical inference might suffer 

474 from false negative observations, as potentially high-risk places are aggregated with 

475 low-risk ones. The more spatial variability is present in the data, the more profound 

476 the potential impact of the modifiable areal unit (MAUP) [74, 75]. As MAUP depends 
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477 on the level of aggregation, this issue has been linked to ecological bias [76] and the 

478 general suggestion in the scientific literature is to consider the finest spatial scale 

479 available. This can be particularly challenging for rare diseases where the number of 

480 cases at small-area level are very low. Furthermore, the choice of spatial resolution is 

481 mostly dependent on data availability and sparsity. BHMs have been suggested as a 

482 way to, at least partially, deal with MAUP. As there is an explicit relationship among 

483 areas globally and/or locally, through structured random effects, places belonging to 

484 a particularly small area can influence results for other areas, hence alleviating the 

485 MAUP problem [77].

486 A key aspect of surveillance studies concerns how to communicate information to 

487 public health researchers and policy makers. This is particularly challenging as the 

488 statistical modelling of surveillance data becomes more sophisticated. In this context 

489 it is essential to develop user friendly tools such as atlases, web applications and 

490 reporting services that allow for data visualisations and easy implementation of the 

491 advanced methodologies. The Environment and Health Atlas for England and Wales 

492 [35] (typical output from the Atlas was presented in Figure 1) is an example of work in 

493 this direction, providing stakeholders and the general public with a collection of maps 

494 to inform on the spatial distribution of environmental factors and diseases. Through 

495 the exceedance probabilities, these maps give a perception of the uncertainty around 

496 the area level relative risks estimates.

497 Web applications allow the ready implementation of statistical methods and perform 

498 complex data analyses, often through interactive data visualisations. These can be 

499 particularly useful for practitioners less skilful in statistical modelling and programming. 

500 As an example, the Rapid Inquiry Facility (RIF) which is currently being redeveloped 

501 within SAHSU, is designed to facilitate disease mapping and risk analysis studies and 
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502 has been employed by more than 45 institutions in a number of countries [78]. A more 

503 recent example is the SpatialEpiApp that integrates two methods for disease mapping 

504 and cluster detection [79].

505 To conclude, in this paper we presented a range of BHMs, which have proved to be 

506 useful for non-communicable disease surveillance. The choice of model should 

507 depend on various factors and most importantly on the objective of the study, 

508 characteristics of the data, and computational resources. It is commonly 

509 recommended to perform simulation studies based on the data in hand, to inform the 

510 model and to select detection rules that are most appropriate in each case. 

511 We believe that epidemiological surveillance will be at the centre of future 

512 methodological research to match the continuous increase in data availability, e.g. 

513 through social media; this will also open up issues related to data integration, selection 

514 bias and spatio-temporal misalignment. At the same time there will be the need to 

515 reduce the computational burden of increasingly complex models applied to large 

516 datasets, in order to provide timely results for decision making.

517
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 FDR FOR Sensitivity Specificity 

DM1 
0.785 

 (0.773, 0.800) 

0.002 

 (0.000, 0.006) 

0.979 

 (0.933, 1.000) 

0.722 

 (0.695, 0.744) 

DM2 
0.191 

 (0.100, 0.267) 

0.026  

(0.020, 0.030) 

0.660  

(0.600, 0.733) 

0.987  

(0.981, 0.995) 

STmix1 
0.000 

 (0.000, 0.000) 

0.017 

 (0.010, 0.024) 

0.773 

 (0.683, 0.867) 

1.000 

 (1.000, 1.000) 

STmix2 
0.220 

 (0.167, 0.300) 

0.002 

 (0.000, 0.005) 

0.969 

 (0.933, 1.000) 

0.978 

 (0.969, 0.985) 

FlexDetect 
0.019  

(0.015, 0.031) 

0.005  

(0.004, 0.006) 

0.796 

 (0.763, 0.827) 

1.000  

(0.999, 1.000) 

Table1: Results of the simulation study to compare the detection performance of 

disease mapping (DM), the mixture model on the spatio-temporal interaction 

(STmix1, STmix2) and the mixture model on the spatio-temporal rates (FlexDetect).  
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Figure 1: Area specific posterior mean relative risk of malignant melanoma (left) and posterior probability 
that an area is characterised by a relative risk above 1 (right). Source: Environment and Health Atlas [42]. 
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Figure 2: Relative risks and 95% credible intervals of hospital admissions for asthma and COPD for the 
national (common) temporal trend and for four areas classified as unusual. 
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