90 research outputs found

    Probing the fuzzy sphere regularisation in simulations of the 3d \lambda \phi^4 model

    Get PDF
    We regularise the 3d \lambda \phi^4 model by discretising the Euclidean time and representing the spatial part on a fuzzy sphere. The latter involves a truncated expansion of the field in spherical harmonics. This yields a numerically tractable formulation, which constitutes an unconventional alternative to the lattice. In contrast to the 2d version, the radius R plays an independent r\^{o}le. We explore the phase diagram in terms of R and the cutoff, as well as the parameters m^2 and \lambda. Thus we identify the phases of disorder, uniform order and non-uniform order. We compare the result to the phase diagrams of the 3d model on a non-commutative torus, and of the 2d model on a fuzzy sphere. Our data at strong coupling reproduce accurately the behaviour of a matrix chain, which corresponds to the c=1-model in string theory. This observation enables a conjecture about the thermodynamic limit.Comment: 31 pages, 15 figure

    Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models

    Full text link
    The effective geometry and the gravitational coupling of nonabelian gauge and scalar fields on generic NC branes in Yang-Mills matrix models is determined. Covariant field equations are derived from the basic matrix equations of motions, known as Yang-Mills algebra. Remarkably, the equations of motion for the Poisson structure and for the nonabelian gauge fields follow from a matrix Noether theorem, and are therefore protected from quantum corrections. This provides a transparent derivation and generalization of the effective action governing the SU(n) gauge fields obtained in [1], including the would-be topological term. In particular, the IKKT matrix model is capable of describing 4-dimensional NC space-times with a general effective metric. Metric deformations of flat Moyal-Weyl space are briefly discussed.Comment: 31 pages. V2: minor corrections, references adde

    Protein Kinase C Epsilon Cooperates with PTEN Loss for Prostate Tumorigenesis through the CXCL13-CXCR5 Pathway

    Get PDF
    PKCε, an oncogenic member of the PKC family, is aberrantly overexpressed in epithelial cancers. To date, little is known about functional interactions of PKCε with other genetic alterations, as well as the effectors contributing to its tumorigenic and metastatic phenotype. Here, we demonstrate that PKCε cooperates with the loss of the tumor suppressor Pten for the development of prostate cancer in a mouse model. Mechanistic analysis revealed that PKCε overexpression and Pten loss individually and synergistically upregulate the production of the chemokine CXCL13, which involves the transcriptional activation of the CXCL13 gene via the non-canonical nuclear factor κB (NF-κB) pathway. Notably, targeted disruption of CXCL13 or its receptor, CXCR5, in prostate cancer cells impaired their migratory and tumorigenic properties. In addition to providing evidence for an autonomous vicious cycle driven by PKCε, our studies identified a compelling rationale for targeting the CXCL13-CXCR5 axis for prostate cancer treatment.Centro de Investigaciones Inmunológicas Básicas y Aplicada

    A Randomized Ph2 Study of MEDI0680 in Combination With Durvalumab vs. Nivolumab Monotherapy in Patients With Advanced or Metastatic Clear Cell Renal Cell Carcinoma

    Get PDF
    BACKGROUND: MEDI0680 is a humanized anti-programmed cell death-1 (PD-1) antibody and durvalumab is an anti-PD-L1 antibody. Combining treatment using these antibodies may improve efficacy versus blockade of PD-1 alone. This phase 2 study evaluated antitumor activity and safety of MEDI0680 plus durvalumab versus nivolumab monotherapy in immunotherapy naïve patients with advanced clear cell renal cell carcinoma who received at least one prior line of anti-angiogenic therapy. METHODS: Patients received either MEDI0680 (20 mg/kg) with durvalumab (750 mg) or nivolumab (240 mg), all IV Q2W. The primary endpoint was investigator-assessed objective response rate (ORR). Secondary endpoints included best overall response, progression-free survival (PFS), safety, overall survival (OS), and immunogenicity. Exploratory endpoints included changes in circulating tumor DNA (ctDNA), baseline tumor mutational burden (TMB), and tumor-infiltrated immune cell profiles. RESULTS: Sixty-three patients were randomized (combination, n = 42; nivolumab, n = 21). ORR was 16.7% (7/42; 95% CI, 7.0-31.4) with combination treatment and 23.8% (5/21; 95% CI, 8.2- 47.2) with nivolumab. Median PFS was 3.6 months in both arms; median OS was not reached in either arm. Due to AEs, 23.8% of patients discontinued MEDI0680 and durvalumab and 14.3% of patients discontinued nivolumab. In the combination arm, reduction in ctDNA fraction was associated with longer PFS. ctDNA mutational analysis did not demonstrate an association with response in either arm. Tumor-infiltrated immune profiles showed an association between immune cell activation and response in the combination arm. CONCLUSIONS: MEDI0680 combined with durvalumab was safe and tolerable; however, it did not improve efficacy versus nivolumab monotherapy

    Towards Noncommutative Fuzzy QED

    Get PDF
    We study in one-loop perturbation theory noncommutative fuzzy quenched QED_4. We write down the effective action on fuzzy S**2 x S**2 and show the existence of a gauge-invariant UV-IR mixing in the model in the large N planar limit. We also give a derivation of the beta function and comment on the limit of large mass of the normal scalar fields. We also discuss topology change in this 4 fuzzy dimensions arising from the interaction of fields (matrices) with spacetime through its noncommutativity.Comment: 33 page

    Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere

    Get PDF
    We address a detailed non-perturbative numerical study of the scalar theory on the fuzzy sphere. We use a novel algorithm which strongly reduces the correlation problems in the matrix update process, and allows the investigation of different regimes of the model in a precise and reliable way. We study the modes associated to different momenta and the role they play in the ``striped phase'', pointing out a consistent interpretation which is corroborated by our data, and which sheds further light on the results obtained in some previous works. Next, we test a quantitative, non-trivial theoretical prediction for this model, which has been formulated in the literature: The existence of an eigenvalue sector characterised by a precise probability density, and the emergence of the phase transition associated with the opening of a gap around the origin in the eigenvalue distribution. The theoretical predictions are confirmed by our numerical results. Finally, we propose a possible method to detect numerically the non-commutative anomaly predicted in a one-loop perturbative analysis of the model, which is expected to induce a distortion of the dispersion relation on the fuzzy sphere.Comment: 1+36 pages, 18 figures; v2: 1+55 pages, 38 figures: added the study of the eigenvalue distribution, added figures, tables and references, typos corrected; v3: 1+20 pages, 10 eps figures, new results, plots and references added, technical details about the tests at small matrix size skipped, version published in JHE

    Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign

    Get PDF
    Submicron atmospheric aerosol samples were collected during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) 2004 campaign on four platforms: Chebogue Point (Nova Scotia, Canada), Appledore Island (Maine), the CIRPAS Twin Otter over Ohio, and the NOAA R/V Ronald H. Brown in the Gulf of Maine. Saturated aliphatic C-C-H, unsaturated aliphatic C=C−H, aromatic C=C−H, organosulfur C-O-S, carbonyl C=O, and organic hydroxyl C-OH functional groups were measured by calibrated Fourier Transform Infrared (FTIR) spectroscopy at all four sampling platforms. The ratio of molar concentrations of carbonyl C=O to saturated aliphatic C-C-H groups was nearly constant at each sampling platform, with the Twin Otter samples having the lowest ratio at 0.1 and the three more coastal platforms having ratios of 0.4 and 0.5. Organic mass (OM) to organic carbon (OC) ratios follow similar trends for the four platforms, with the Twin Otter having the lowest ratio of 1.4 and the coastal platforms having slightly higher values typically between 1.5 and 1.6. Organosulfur compounds were occasionally observed. Collocated organic aerosol sampling with two Aerodyne aerosol mass spectrometers for OM, a Sunset Laboratory thermo-optical analysis instrument for OC, and an ion chromatography-particle into liquid sampler (IC-PILS) for speciated carboxylic acids provided comparable results for most of the project, tracking the time series of FTIR OM, OC, and carbonyl groups, respectively, and showing simultaneous peaks of similar magnitude during most of the project. The FTIR/IC-PILS comparison suggests that about 9% of the carbonyl groups found in submicron organic particles on the Twin Otter are typically associated with low molecular weight carboxylic acids
    corecore