129 research outputs found

    General-base catalysed hydrolysis and nucleophilic substitution of activated amides in aqueous solutions

    Get PDF
    The reactivity of 1-benzoyl-3-phenyl-1,2,4-triazole (1a) was studied in the presence of a range of weak bases in aqueous solution. A change in mechanism is observed from general-base catalysed hydrolysis to nucleophilic substitution and general-base catalysed nucleophilic substitution. A slight tendency is also observed for the more hydrophobic general bases to show higher reactivity towards 1a. Aspartame is an effective nucleophile, possibly because nucleophilic substitution is subject to intramolecular general-base catalysis. A general conclusion derived from the present results is that unexpected rate effects can only be rationalised provided that the detailed reaction mechanisms are well understood. Copyright (C) 2003 John Wiley Sons, Ltd.</p

    Thermal switch of oscillation frequency in belousov- zhabotinsky liquid marbles

    Get PDF
    © 2019 The Authors. External control of oscillation dynamics in the Belousov- Zhabotinsky (BZ) reaction is important for many applications including encoding computing schemes. When considering the BZ reaction, there are limited studies dealing with thermal cycling, particularly cooling, for external control. Recently, liquid marbles (LMs) have been demonstrated as a means of confining the BZ reaction in a system containing a solid-liquid interface. BZ LMs were prepared by rolling 50 ml droplets in polyethylene (PE) powder. Oscillations of electrical potential differences within the marble were recorded by inserting a pair of electrodes through the LM powder coating into the BZ solution core. Electrical potential differences of up to 100mV were observed with an average period of oscillation ca 44 s. BZ LMs were subsequently frozen to 218C to observe changes in the frequency of electrical potential oscillations. The frequency of oscillations reduced upon freezing to 11mHz cf. 23 mHz at ambient temperature. The oscillation frequency of the frozen BZ LM returned to 23 mHz upon warming to ambient temperature. Several cycles of frequency fluctuations were able to be achieved

    DODAB and DODAC bilayer-like aggregates in the micromolar surfactant concentration domain

    Get PDF
    In the millimolar concentration domain (typically 1 mM), dioctadecyldimethylammonium bromide and chloride (DODAX, X representing Br- or Cl- counterions) molecules assemble in water as large unilamellar vesicles. Differential scanning calorimetry (DSC) is a suitable technique to obtain the melting temperature (Tm) characteristic of surfactant bilayers, while fluorescence spectroscopy detects formation of surfactant aggregates, like bilayers. These two techniques were combined to investigate the assemble of DODAX molecules at micromolar concentrations, from 10 to 100 micromolar. At 1 mM surfactant, Tm ~ 45 ºC and 49 oC, respectively for DODAB and DODAC. DSC and fluorescence of Nile Red were used to show the formation of DODAX aggregates, at the surfactant concentration as low as 10 micromolar, whose Tm decreases monotonically with increasing DODAX concentration to attain the value for the ordinary vesicles. The data indicate that these aggregates are organized as bilayer-like structures.Fundação para a Ciência e a Tecnologia (FCT

    MIDA boronates are hydrolysed fast and slow by two different mechanisms

    Get PDF
    MIDA boronates (N-methylimidodiacetic boronic acid esters) serve as an increasingly general platform for small-molecule construction based on building blocks, largely because of the dramatic and general rate differences with which they are hydrolysed under various basic conditions. Yet the mechanistic underpinnings of these rate differences have remained unclear, which has hindered efforts to address the current limitations of this chemistry. Here we show that there are two distinct mechanisms for this hydrolysis: one is base mediated and the other neutral. The former can proceed more than three orders of magnitude faster than the latter, and involves a rate-limiting attack by a hydroxide at a MIDA carbonyl carbon. The alternative 'neutral' hydrolysis does not require an exogenous acid or base and involves rate-limiting B-N bond cleavage by a small water cluster, (H2O)n. The two mechanisms can operate in parallel, and their relative rates are readily quantified by (18)O incorporation. Whether hydrolysis is 'fast' or 'slow' is dictated by the pH, the water activity and the mass-transfer rates between phases. These findings stand to enable, in a rational way, an even more effective and widespread utilization of MIDA boronates in synthesis
    • …
    corecore