27 research outputs found

    Linear Model-Based Predictive Control of the LHC 1.8 K Cryogenic Loop

    Get PDF
    The LHC accelerator will employ 1800 superconducting magnets (for guidance and focusing of the particle beams) in a pressurized superfluid helium bath at 1.9 K. This temperature is a severely constrained control parameter in order to avoid the transition from the superconducting to the normal state. Cryogenic processes are difficult to regulate due to their highly non-linear physical parameters (heat capacity, thermal conductance, etc.) and undesirable peculiarities like non self-regulating process, inverse response and variable dead time. To reduce the requirements on either temperature sensor or cryogenic system performance, various control strategies have been investigated on a reduced-scale LHC prototype built at CERN (String Test). Model Based Predictive Control (MBPC) is a regulation algorithm based on the explicit use of a process model to forecast the plant output over a certain prediction horizon. This predicted controlled variable is used in an on-line optimization procedure that minimizes an appropriate cost function to determine the manipulated variable. One of the main characteristics of the MBPC is that it can easily incorporate process constraints; therefore the regulation band amplitude can be substantially reduced and optimally placed. An MBPC controller has completed a run where performance and robustness has been compared against a standard PI controller (Proportional and Integral)

    Non-Linear Advanced Control of the LHC Inner Triplet Heat Exchanger Test Unit

    Get PDF
    The future Large Hadron Collider (LHC) at CERN will include eight interaction region final focus magnet systems, the so-called "Inner Triplet", one on each side of the four beam collision points. The Inner Triplets will be cooled in a static bath of pressurized He II nominally at 1.9 K. This temperature is a control parameter and has very severe constraints in order to avoid the transition from the superconducting to normal resistive state. The main difference in these special zones with respect to a regular LHC cell is higher dynamic heat load unevenly distributed which modifies largely the process characteristics and hence the controller performance. Several control strategies have already been tested at CERN in a pilot plant (LHC String Test) which reproduced a LHC half-cell. In order to validate a common control structure along the whole LHC ring, a Nonlinear Model Predictive Control (NMPC) has been developed and implemented in the Inner Triplet Heat Exchanger Unit (IT-HXTU) at CERN. Automation of the Inner Triplet setup and the advanced control techniques deployed based on the Model Based Predictive Control (MBPC) principle are presented

    Applying Advanced Control Techniques for Temperature Regulation of the LHC Superconducting Magnets

    Get PDF
    The temperature of the superconducting magnets for the future LHC accelerator is a control parameter with strict operating constraints imposed by (a) the maximum temperature at which the magnets can o perate, (b) the cooling capacity of the cryogenic system, (c) the variability of applied heat loads and (d) the accuracy of the instrumentation. A temperature regulation with narrow control band can i n principle be achieved by implementing a Model Predictive Control (MPC)-type controller. For this purpose, and for investigating the behaviour of the cooling system, a simulation program has been dev eloped. A prototype MPC controller has been installed and completed its first run

    He II Heat Exchanger Test Unit for the LHC Inner Triplet

    Get PDF
    The Inner Triplet Heat Exchanger Test Unit (IT-HXTU) is a 30-m long thermal model designed at Fermilab, built in US industry, fully automated and tested at CERN as part of the US LHC program to develop the LHC Interaction Region quadrupole system. The cooling scheme of the IT-HXTU is based on heat exchange between stagnant pressurized He II in the magnet cold mass and saturated He II (two-phase) flowing in a heat exchanger located outside of and parallel to the cold mass. The purposes of this test are, among others, to validate the proposed cooling scheme and to define an optimal control strategy to be implemented in the future LHC accelerator. This paper discusses the results for the heat exchanger test runs and emphasizes the thermal and hydraulic behavior of He II for the inner triplet cooling scheme

    Instrumentation, Field Network and Process Automation for the Cryogenic System of the LHC Test String

    Get PDF
    CERN is now setting up String 2, a full-size prototype of a regular cell of the LHC arc. It is composed of two quadrupole, six dipole magnets, and a separate cryogenic distribution line (QRL) for the supply and recovery of the cryogen. An electrical feed box (DFB), with up to 38 High Temperature Superconducting (HTS) leads, powers the magnets. About 700 sensors and actuators are distributed along four Profibus DP and two Profibus PA field buses. The process automation is handled by two controllers, running 126 Closed Control Loops (CCL). This paper describes the cryogenic control system, associated instrumentation, and their commissioning

    The Cryogenic System for the LHC Test String 2: Design, Commissioning and Operation

    Get PDF
    A 107-m long superconducting magnet string representing a full-cell of the LHC machine was designed for assembly and commissioning at CERN in order to validate the final design choices. This new facility, thereafter called Test String 2, and its cryogenic infrastructure cons ist of feed and return boxes coupled via transfer lines to a 6 kW @ 4.5 K refrigerator and to a low pressure pumping group, a separate cryogenic distribution line, an electrical feed box with HTS current leads, 2 quadrupole and 6 dipole prototype and pre-series superconducting magnets

    First Results and Status of the LHC Test String 2

    Get PDF
    After the commissioning of String 2 Phase1 and the powering of the main circuits in autumn 2001, a short yet vigorous experimental program was carried-out to validate the final design choices for the technical systems of LHC. This program included the investigation of thermo-hydraulics of quenches quench propagation, power converter controls and tracking between power converters, as well as the measurement of currents induced in the beam screen after a quench and crossing the interconnects. Parameters significant for the LHC, such as heat loads, were also measured. During the winter shutdown the String was completed to a full cell with the addition of three pre-series dipoles (Phase 2). After a short description of the layout of Phase 1 and Phase 2, the results of the experiments are presented and the future experimental program is outlined

    Tracking the antibody immunome in sporadic colorectal cancer by using antigen self-assembled protein arrays

    Get PDF
    © 2021 by the authors.Sporadic Colorectal Cancer (sCRC) is the third leading cause of cancer death in the Western world, and the sCRC patients presenting with synchronic metastasis have the poorest prognosis. Genetic alterations accumulated in sCRC tumor cells translate into mutated proteins and/or abnormal protein expression levels, which contribute to the development of sCRC. Then, the tumor-associated proteins (TAAs) might induce the production of auto-antibodies (aAb) via humoral immune response. Here, Nucleic Acid Programmable Protein Arrays (NAPPArray) are employed to identify aAb in plasma samples from a set of 50 sCRC patients compared to seven healthy donors. Our goal was to establish a systematic workflow based on NAPPArray to define differential aAb profiles between healthy individuals and sCRC patients as well as between non-metastatic (n = 38) and metastatic (n = 12) sCRC, in order to gain insight into the role of the humoral immune system in controlling the development and progression of sCRC. Our results showed aAb profile based on 141 TAA including TAAs associated with biological cellular processes altered in genesis and progress of sCRC (e.g., FSCN1, VTI2 and RPS28) that discriminated healthy donors vs. sCRC patients. In addition, the potential capacity of discrimination (between non-metastatic vs. metastatic sCRC) of 7 TAAs (USP5, ML4, MARCKSL1, CKMT1B, HMOX2, VTI2, TP53) have been analyzed individually in an independent cohort of sCRC patients, where two of them (VTI2 and TP53) were validated (AUC ~75%). In turn, these findings provided novel insights into the immunome of sCRC, in combination with transcriptomics profiles and protein antigenicity characterizations, wich might lead to the identification of novel sCRC biomarkers that might be of clinical utility for early diagnosis of the tumor. These results explore the immunomic analysis as potent source for biomarkers with diagnostic and prognostic value in CRC. Additional prospective studies in larger series of patients are required to confirm the clinical utility of these novel sCRC immunomic biomarkers.We gratefully acknowledge financial support from the Spanish Health Institute Carlos III (ISCIII) for the grants: FIS PI14/01538, FIS PI17/01930 and CB16/12/00400. We also acknowledge Fondos FEDER (EU) “Una manera de hacer Europa” and Junta Castilla-León (COVID19 grant COV20EDU/00187). Fundación Solórzano FS/38-2017. The Proteomics Unit belongs to ProteoRed, PRB3-ISCIII, supported by grant PT17/0019/0023, of the PE I + D + I 2017-2020, funded by ISCIII and FEDER. CNPq-National Council for Scientific and Technological Development (Brazil) (306258/2019-6) and FAPERJ-Foundation for Research Support of Rio de Janeiro State for the financial support (E-26/201.670/2017 and 210.379/2018). M. González-González is supported by MINECOPTA2019-017870-I.A. Landeira-Viñuela is supported by VIII Centenario-USAL PhD Program. P.J.-V. is supported by JCYL PhD Program and scholarship JCYL-EDU/601/2020. P.D. and E.B. are supported by a JCYL-EDU/346/2013 Ph.D. scholarship

    My scientific life

    No full text
    corecore