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ABSTRACT

The LHC accelerator will employ 1800 superconducting magnets (for guidance and
focusing of the particle beams) in a pressurized superfluid helium bath at 1.9 K. This
temperature is a severely constrained control parameter in order to avoid the transition from
the superconducting to the normal state. Cryogenic processes are difficult to regulate due to
their highly non-linear physical parameters (heat capacity, thermal conductance, etc.) and
undesirable peculiarities like non self-regulating process, inverse response and variable
dead time. To reduce the requirements on either temperature sensor or cryogenic system
performance, various control strategies have been investigated on a reduced-scale LHC
prototype built at CERN (String Test). Model Based Predictive Control (MBPC) is a
regulation algorithm based on the explicit use of a process model to forecast the plant
output over a certain prediction horizon. This predicted controlled variable is used in an on-
line optimization procedure that minimizes an appropriate cost function to determine the
manipulated variable. One of the main characteristics of the MBPC is that it can easily
incorporate process constraints; therefore the regulation band amplitude can be
substantially reduced and optimally placed. An MBPC controller has completed a run
where performance and robustness has been compared against a standard PI controller
(Proportional and Integral).

INTRODUCTION

Due to the complexity of the LHC accelerator, it was decided to install and operate
several full-length prototype magnets in a test String1. This is a fully working model of the
future LHC apart from the absence of circulating particle beams. The goal of the String was
to optimize operational aspects of all accelerator systems. In particular for the cryogenic
system the two-phase superfluid helium flow in the heat exchanger tube, the temperature
control of the magnets, and the thermohydraulic effect of resistive transitions, were
investigated.

The String (Figure 1) consists of one quadrupole and three dipoles (total length of 50
meters), it is mounted with a slope of 1.4% to match the steepest inclination in the actual
tunnel. The magnets operate below 1.9 K in a bath of pressurised helium. The heat



2

deposited on the bath is extracted by gradual vaporization of saturated superfluid helium
flowing along the wetted length of a heat exchanger (HX) tube.

The liquid helium is taken from the main reservoir (SFB). Subcooled helium is
expanded to saturation in the Joule-Thomson valve and transported by a small-diameter
feeder pipe to the end of the HX tube. The helium flows back towards the overflow pot that,
in normal operation, remains empty. The helium vapor is taken out from the overflow pot
and through the subcooling-heat exchanger, thus providing the subcooling for the incoming
pressurised liquid.

PLANT MODELLING AND DYNAMICAL BEHAVIOUR

Modelling and simulation are central to the design of control systems. They result in a
better knowledge of the process and of the quality of both the regulation and the overall
process optimization.

A first principles model (based on basic physical laws) gives the possibility of
implementing the strongest non-linearities of the process. On the other hand the main
drawbacks are the time required for developing a sufficiently accurate model and its
adaptation into the non-linear controller strategy.

A non-linear model based on basic physics has been developed and validated using
real data2. It is used to get more knowledge about the process, generate a linear model for
the MBPC controller, and to tune the MBPC controller before porting it to the real plant.
This model has been simulated using a general-purpose process simulation language
(ACSL®). The main non-linearities of the process are that it is non-self regulating
(integrating response), it exhibits inverse response and it has a variable dead time, mainly
due to the transportation lag in the HX pipe.

System identification theory allows the creation of linear mathematical models
describing relationships between inputs and outputs taken from the real plant
(measurements). Essentially this is done by adjusting parameters within a given model until
its output coincides as well as possible with the measured output. A set of experiments has
to be done in order to get the data set with adequate information contents. The design of
these experiments includes selection and determination of input signals, sampling time,
measuring time period, equipment and filtering. Evidently a rather sound knowledge of the
process helps to plan these experiments. Again the drawback of using linear models is their
limited operational range. Performance might be severely degraded outside the
identification conditions for a strongly non-linear process.

A phase of identification was carried out at the String with the goal of collecting input-
output data for designing linear models. A reasonably good performance is observed by
using a transfer function (Eq. (1)) of second order that was identified with a sampling
period of 20 seconds using Matlab® (Identification® and Hiden® toolboxes). The G(q-1)

Figure 1. String facility: schematic diagram of the LHC 1.8 K Cooling Loop
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represents the transfer function model on the backward shift operator q-1, u(t) is the input
(valve), and y(t) is the output (temperature).
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The identified model performance is checked comparing measured and simulated data
(Figure 2). Residuals are within a band narrower than approximately 10 mK, which is a
good result.

CONTROL SYSTEM

Regulation goal

The regulation goal is to keep the temperature of the superconducting magnets as
constant as possible within strict operating constraints imposed by: the maximum
temperature at which the magnets can operate, the cooling capacity of the cryogenic
system, the heat loads, and the accuracy of the instrumentation.

The Joule-Thomson valve is the manipulated variable, and the warmest temperature
sensor located in the cold masses (two on each magnet) provides the controlled variable.
Disturbances are of two different types: heat loads and variations in the flow through the
Joule-Thomson valve. Heat loads are produced by heat inleaks from the higher temperature
levels, magnet current ramping and particle beam losses (simulated in this case by electrical
heaters). The set point is the saturation temperature of the liquid helium flowing through the
HX plus a certain �T, typically 0.06 K.

Up to now, a PI regulator has controlled the pilot plant (String), but despite its ability
to bring the controlled variable to the desired value in the presence of heat load variations, a
substantial improvement is expected by using a more suitable control approach. Such
controller should have a reduced regulation band that would allow relaxing the constraints
on either the instrumentation accuracy or the cryogenic system capacity margin.

MBPC controller algorithm

Model Based Predictive Control (MBPC) methods3 use a dynamic model of the
process to predict the controlled variable (y(t)). This prediction is used in an on-line
optimization procedure that minimizes an appropriate cost function to determine the

Figure 2. • (temperature vs. model ouput) @ 1.87 K
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manipulated variable (u(t)). Usually the cost function depends on the quadratic error
between the future reference variable and the future controlled variable within a limited
time horizon. This procedure is repeated every sampling time with actual process data
(receding strategy)

MBPC presents a series of advantages like, among others, adaptability to a great
variety of processes (i.e.: long time delays, non-minimum phase), it introduces feedforward
in a natural way for compensating measurable disturbances, it considers delay times, it has
a complete treatment of constraints and the multivariable case can be easily dealt with.

The methodology4 is composed of:

(a) The future outputs, y(t+j), for a determined time horizon, N, are predicted at each
instant, t, using a process model (Eq. 2). This predicted output depends on the past history
(input, output) and the future control signals. In the case of GPC (Generalized Predictive
Control) the relationship between the control and manipulated variable is:

Ay t Bu t n t( ) ( ) ( ) � (2)

where A(q-1), B(q-1) are polynomials on the q-1 shift operator, u(t), y(t) the input and
output data respectively, and n(t) a noise signal.

(b) A future reference trajectory w(t+j) is defined (Figure 3), which describes how the
process should be driven from the actual y(t) to the desired set-point r(t+j)

 (c) The set of future controls (u(t), u(t+1), u(t+2), …, u(t+Nu)) is usually calculated
by minimizing a quadratic function (Eq. (3)) of the errors between the predicted output and
the reference trajectory, usually also including penalties on the control moves.
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N1, N2 : prediction horizon
Nu : control horizon
E   : tuning parameter

(d) The manipulated variable, u(t), at time t, is sent to the process. This procedure is
repeated every sampling time.

Figure 3. Basic principle of model predictive control
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(e) This optimization procedure can include restrictions (Eq. (4)) in the future values
of the process variables:

L    �  u(t+j)   � H
L’  �  'u(t+j) � H’
L’’ �   y(t+j)  �  H’’

(4)

Control Architecture.

Figure 4 shows the regulatory control strategy implemented in the String test. Two
Programmable Logic Controllers (PLC) are used concurrently. The first (S5) is a standard
PLC where a PI control loop is implemented. The M7 represents an industrial PC using a
real time operation system (RMOS®) where high level programs (C++) run over. The
communication between them is done via serial port (3964R Siemens® protocol)

The S5 controller takes the temperature measurements from the magnets and acts on
the Joule Thomson valve. During normal conditions the PI is idle, and the manipulated and
controlled variable are exchanged with the MBPC (M7); once the M7 receives the
controlled variable, a predictive control algorithm calculates and sends back the appropriate
valve sequence to the S5 PLC. A watchdog is always checking that the M7 is working
properly; if an anomaly is detected, the PI implemented on the S5 takes over the control
yielding a high degree of reliability.

A desktop PC has been connected to the M7 via the serial port (RS-232-C) for
controller and process monitoring, controller tuning and data archiving. For these purposes,
a Windows application was developed using the Object Windows Library (OWL®). This
application allows mainly:

- On-line visualization of the controller predictions, optimum valve sequence
calculations and internal controller variables.

- On-line controller tuning (models, horizons, weights, constraints…)
- Data archiving of the measured and predicted variables, optimal sequence

calculation and some internal variables of the controller.

EXPERIMENTAL RESULTS

The control loop should be tuned either for set-point changes, process disturbances, or
reduced overshoot. Tuning is usually performed for one strategy, after which the
acceptability of the tuning with regard to the other strategy is verified and compromises are
made as necessary.

Stability is the keystone of the LHC 1.8 K cooling loop because, in principle, it does
not require set point changes during normal operation. Control loop response can be
checked by observing the process variable when process upsets are simulated. In this case,
two heaters inside the dipoles 1 and 3 were used to perturb the process with a quantified
heat load representative of the future LHC operational scenario. Disturbances of 0.2
watts/meter were used in typical experiments, and an exceptional 0.6 watts/meter heat load
was used to check the behavior of the controller with higher temperature excursions.

Cooling
Process

M7 PLC
MBPC

Set Point

Magnet
TemperaturesJT valve

Optimum
JT valve

Temperature
Set Point

S5 PLC
PI

Figure 4. Control architecture
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Control loop performance can be quantified by the overshoot percentage, time to
return to set point, the integral of the square of the error, ISE, and the integral of time
multiplied by the absolute value of the error, ITAE, Eq. (5).
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Results I: Controller Robustness.

As explained before, the controller is designed to be robust against possible
perturbations. To achieve this objective, extensive experiments on tuning were performed
and robustness of the controller was checked producing perturbations (heat load between
0.2 and 0.6 W/m).

The MBPC controller performance is shown in comparison with a PI controller which
tuning parameters have been experimentally optimized. Processes, which show delays and
inverse response, oblige to slow down the controller action in order to preserve stability. PI
parameters that seem to be the more appropriate for the majority of the different working
ranges of the process may produce unstable actions if the heat loads change.

By applying a heat load of 0.2 W/m (Figure 5), it is possible to notice that using a
MBPC with constraints on temperature excursions (allowed band of 6 mK around the set
point), could improve largely the PI robustness. The indexes are improved in 60.5% for the
IAE and a 38.5% for the ITAE one. Furthermore the temperature excursion and settling
time are reduced by 36.4% and 26.4% respectively.

With larger heat loads of up to 0.6 W/m (Figure 6) both the PI and MBPC
performances are degraded since their parameters where optimized in a different
operational region. However the MBPC shows a far superior behavior on settling time and
temperature excursion.

Clearly the recovery of the temperature excursion shows that the controller overreacts
and a correction is required afterwards. This is a clear symptom of deteriorated predictions
either provoked by the model-process mismatch or by using a linear model outside of its
operational range. Anyway the robustness observed for MBPC is superior to that of the PI,
which suffers from a strong oscillatory behavior when applying sudden heat loads.
Corroborating this fact, several linear MBPC techniques tested on the String have also
shown better behavior5.
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Figure 5. Compared performance of MBPC vs. PI (Disturbance: 0.2 W/m)
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Results II: Controller Performance

Although the controller has been designed and tuned specifically for robustness
against disturbances, its performance has been tested under changes on the set point, even
though this is not representative of the LHC operation.

MBPC response, under a set-point change (15 mK), is compared with that of the PI
(Figure 7), both, with aggressive parameters [K=100,Ti=60] and with the sub-optimal
parameters [K=50, Ti=60]. In a classical PI controller, K represents the controller gain and
Ti represents the integral time. With the first couple of parameters and the set-point step up,
we clearly get an unstable situation with oscillatory behavior. In the step down, the
parameters have been set to the conservative ones [K=50,Ti=60] getting a better response
though still worse than the MBPC.
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Figure 6. Compared performance of MBPC vs. PI (Disturbance: 0.6 W/m)
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CONCLUSIONS

After four years operation, the test-bed called LHC Test String6 was switched off.
During the experimental program the equipment installed in the String operated for almost
13000 hours below 2 K. This corresponds to a good simulation of the operating conditions
expected at the LHC. The new Test String (String 2) will be commissioned in early 2001,
and it will represent a full cell of the LHC accelerator consisting in two quadrupoles and six
dipoles with a length of 106.9 meters.

Choosing an MBPC technology for a given application is a fairly complex question. In
our particular case, MBPC has shown a substantial regulation improvement, and it did
demonstrate the potential of using new advanced control techniques to the regulation of
very complex processes with high non-linearities like the one exposed in this paper. Further
improvements should still be expected when applying non-linear predictive control7

algorithms.

The major challenge to the String 2 implementation will be the usage of non-linear
models embedded on the controller to perform non-linear predictive control. The controller
algorithm has to be reformulated and a new approach has to be programmed based on a first
principles model. Extensive work has been done on the process modeling, but still much
work is required to develop a non-linear controller.

The more important feature of the LHC 1.8 K Cooling Loop is the fact that the
operating conditions could change abruptly and then the process characteristics vary largely
as modifications in the dead time and inverse response amplitude. The String 2 is expected
to exhibit longer delays, although the pressure drop will be largely reduced by using the
new heat exchanger smooth tube instead of the former corrugated one. It is then essential
that the controller cope with such disturbances. Improvement on robustness should be
obtained for a model covering a larger working zone without having problems with the
prediction calculations.
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