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ABSTRACT

The future Large Hadron Collider (LHC) at CERN will include eight interaction
region final focus magnet systems, the so-called “Inner Triplet”, one on each side of the
four beam collision points. The Inner Triplets will be cooled in a static bath of pressurized
He II nominally at 1.9 K. This temperature is a control parameter and has very severe
constraints in order to avoid the transition from the superconducting to normal resistive
state. The main difference in these special zones with respect to a regular LHC cell is
higher dynamic heat load unevenly distributed which modifies largely the process
characteristics and hence the controller performance. Several control strategies have
already been tested at CERN in a pilot plant (LHC String Test) which reproduced a LHC
half-cell. In order to validate a common control structure along the whole LHC ring, a
Nonlinear Model Predictive Control (NMPC) has been developed and implemented in the
Inner Triplet Heat Exchanger Unit (IT-HXTU) at CERN. Automation of the Inner Triplet
setup and the advanced control techniques deployed based on the Model Based Predictive
Control (MBPC) principle are presented.

INTRODUCTION

The Large Hadron Collider (LHC) at CERN will include eight interaction region final
focus magnet systems, the so-called “Inner Triplet”, one on each side of the four beam
collision points. This structure is similar to the one used in the regular accelerator cells
apart of the magnet composition and size of the heat exchanger. The same refrigeration
method and equal physical principles apply to both installations.
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In order to validate a common control structure for the whole LHC ring (about 200
temperature control loops), a Nonlinear Model Predictive Control (NMPC) has been
developed and tested in the IT-HXTU setup at CERN. NMPC has only emerged and the
number of reported industrial applications is still fairly low. The most significant obstacles
to NMPC applications are nonlinear model development, state estimation, and the solution
of the control algorithm in real time.

LHC 1.8 K COOLING LOOP PROCESS DESCRIPTION: IT-XHTU

LHC superconducting magnets will be located in a bath of superfluid helium at
atmospheric pressure and below 1.9 K. This bath will be cooled by low-pressure liquid
helium flowing in heat exchanger tubes threaded along the string of magnets. Due to the
complexity of the LHC accelerator, it was decided to install and operate several full-length
prototype magnets in a test, the LHC String Test [1] and the IT-HXTU [2]. They are full
size models of the future LHC apart from the absence of circulating particle beams.

A full-scale test of the external heat exchanger employed in the interaction region
quadrupole has been constructed with the goal of validating the design calculations for the
heat exchanger and to provide a platform that can be used to study various operational and
regulation aspects [3,4]. The cryostat has been designed and built at Fermilab (USA) and
shipped to CERN, where a sufficiently large pumping facility exists, for its final test.

A simplified flow schematic for the IT-HXTU is shown in FIGURE 1. The liquid
helium is taken from a reservoir at 4.2 K and 1 bar. Subcooled helium is expanded to
saturation at about 17 mbar in the Joule-Thomson valve and transported to the end of the
HX tube. The helium flows back and vapor is taken out through the subcooling-heat
exchanger, thus providing the subcooling for the incoming pressurized liquid.

FIGURE 1 . Simplified flow schematic of the He II heat exchanger test unit
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The dynamic heat load at 1.9 K due to the particle beam interactions totals over 200
W along 30 meters. It is unevenly distributed, with a maximum of about 14 W/m in the
first quadrupole (Q1), which represents about an order of magnitude higher than the load
expected in the main LHC arc magnets. A more detailed account of the maximum heat
load for the Inner Triplets is depicted in Table 1.

Main Process Characteristics 

In order to design, analyze and commission a process control system, one must be
familiar with the characteristics of the process itself. The main non-linearities of the
process are:
(1) nonself-regulating, so it does not get another steady state by its own if a disturbance or

a change of the input is produced (integrator).
(2) exhibiting inverse response, the output change moves initially to the opposite direction

than expected.
(3) variable dead time, mainly due to the transportation lag in the HX pipe. Depending of

the helium located on the HX tube and the overall conditions the equilibrium is
obtained with different wetted lengths.

Nowadays most of the industrial processes are operated using linear controllers,
although it is well known that many of these processes are highly nonlinear. Moreover,
most real systems are represented by process models that are not accurate, subject to
different types of disturbances. The natural way to deal with these problems is the
introduction of a nonlinear controller.

PROCESS AUTOMATION

Several control strategies have been already fully tested at CERN in a pilot plant
(LHC String Test) which reproduced a future LHC half-cell consisting in four magnets in a
row [5,6].

Basic PID (Proportional, Derivative and Integral) control started at the very early
stages showing contrasted results due to the variable dead time present in the process. An
advanced controller was then implemented using a Model-Based Predictive Control
(MBPC) technique. MPBC is a regulation algorithm based on the use of a process model to
forecast the process behaviour plus an on-line-optimization procedure that determines the
future control actions. The ability to handle constraints and to incorporate multivariable
control in a natural way, have led MBPC to become a preferred solution in industry. 

TABLE 1 . Calculated Inner Triplet Heat Loads (IR1)

Temperature Levels 50 to 75 K 4.5 K 1.9 K

Standby (W) 610 92 28

Nominal  Heat Loads (W) 610 131 213

Ultimate Heat Loads (W) 610  156  473
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However, the linear characteristic of this controller can exhibit unacceptable regulator
performance in operating zones outside of that where its internal model was identified.

Nonlinear Model Predictive Control (NMPC) is the natural extension of the MBPC
technique. The algorithm is again based in the use of an internal plant model, this time a
nonlinear one which captures the main process characteristics. With this kind of controllers
other problems may occur, like speed and assurance of a reliable solution in real time.

Plant Modelling

The main issue between all the possible NMPC approaches is the derivation of a
nonlinear model suitable for the controller. Models derived from physical laws and
balances are frequently called “first principles” or “fundamental” models. They
presumably can be used to predict over a wide range of conditions, even without any
operating experience. These models are generally described by a nonlinear continuous state
space model as shown in equation (1)
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where y(t) is the measured variable, u(t) is the controlled variable, v(t) is a measured
disturbance acting on the process, p(t) is a disturbance, ξ() is a measurement noise, and x(t)
is the state of the process (FIGURE 4). The complexity for creating these models depends
on the process and knowledge available. The models obtained are generally complex,
given usually by a set of nonlinear differential equations with no analytical solution.

Modelling is not an easy task, but it can be the only alternative when the plant to be
controlled is not yet built as it is the case of the LHC accelerator. A non-linear model based
on basic physics has been developed and validated using real experimental data obtained in
the IT-HXTU installation. The main non-linearities of the process were captured as can be
seen in FIGURE 2, where two experiments with different process dynamics were
performed in open loop and then experimental data compared to the model response. In
both cases the model behaves extraordinarily well showing the wide-range response
capabilities [7].

NMPC Methodology: Controller and State Estimator

The essence of the model-based predictive control is to optimize, over a certain
horizon, the process behaviour. The regulation objective is thus to find the optimal
manipulated variable sequence, which minimizes the difference between the predictions
and the desired setpoint trajectory. Usually the change in the manipulated variable is
included in that minimization (2).
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where N=N2-N1, NU are respectively the prediction and control horizons, wk+j the internal
trajectory (desired close-loop response) and yk+j the model predicted output. γ, β represents
weight tuning parameters.
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Reliable information about the process state is of crucial importance for safe and
economical process operation. Unfortunately, many of the key process states are neither
easily accessible nor can they be measured with reasonable effort. Model-based estimation
of the process states is an efficient technique in order to address this issue. Predictive
control techniques rely on the model quality which requires the knowledge of the current
state of the nonlinear system in order to compute the solution of the optimal open-loop
control problem [8].

The states, which need to be estimated, are the accumulated He II in the HX tube and
the heat load. The accumulated helium II mass present in the heat exchanger tube can’t be
measured and it is one of the critical factors of the model predictions because it provides
the wetted area in the heat exchanger from where the heat in the pressurized helium is
removed. The overall heat load influences the model predictions as measured on the LHC
prototypes.

In analogy to the model-based predictive control mechanism, the estimation problem
is formulated as an optimal control problem on a finite horizon into the past. In the
framework of receding horizon estimation, a quadratic cost function penalizing, among
others, model and measurement errors, is minimized. The optimization problem is subject
to model equations that consist of a differential algebraic equation system.

The new problem is to estimate the initial conditions which have driven the process to
its present state applying the past control sequence, by minimizing the difference between
the outputs given by the evolution of the system from its initial conditions and the present
measured outputs (3).
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FIGURE 2 . Model performance with different static heat load. Magnet (Tmag) and saturation (Tsat)
temperatures are compared with real experimental data (Measure).
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where Nse is the receding horizon length, ym is the output of the model when the recorder
used control adjustments are applied having into account the x0, initial condition at the time
k-Nse to be estimated and p is a perturbation. γ1 and γ2 weights the contribution of each
factors and become tuning parameters.

The control structure designed for the non-linear controller incorporates a non-linear
predictive algorithm, plus the state estimator. The solution proposed yields a new approach
based on an initial state estimate and on a moving horizon algebraic estimator. It provides
the estimated He II mass accumulated in the heat exchanger tube (mHX) and the heat load
valuation. A general block diagram of the structure can be seen in FIGURE 3.

In the case of the LHC 1.8 K Cooling Loop, the model has been discretized, and for
the efficient solution of the NMPC optimization, control and state estimation, a Sequential
Quadratic Programming algorithm has been used. The solution of the quadratic
programming subproblem is based on two-phase (primal) quadratic programming method.

Control Strategy and Implementation

Two PLC’s are used concurrently as consequence of the regulatory control strategy
adopted. The first (S7) is a classical PLC where most of the IT-HXTU cryogenics
automation loops are implemented, and where, a PI control loop is programmed for the 1.8
K cooling loop temperature regulation. This controller is linked with the plant taking
temperature measurements from the magnets and acting on the Joule-Thomson valve. The
second, a M7 PLC is an industrial PC running a multitasking real time operation system,
RMOS®. It holds the non-linear predictive control algorithm which calculates the
appropriate Joule-Thomson valve sequence for the future.

A dedicated PC is used to configure the NMPC controller incorporating a graphical
application, another PC, connected via an Ethernet network, is running a general SCADA.
PLC programming was carried out by following the IEC 1131-3 standard. The non-linear
controller is created based in the object-oriented paradigm approach permitting a clear
software structure, easy expandability and upgradability, and programmed in the C++
language.

Due to the special architecture of the LHC machine, a distributed solution for the low
level communication has been adopted. The main controller is linked to the sensors via a
Profibus fieldbus and specialized I/O modules. The control room is linked to the PLC's
through an Ethernet network.

FIGURE 3. NMPC control structure
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EXPERIMENTAL RESULTS

The validation of the state estimator module based on the receding horizon was done
experimentally by powering electrical heaters located in the cold mass. This simulates a
measurable change in the overall heat load.

In FIGURE 4 several step-like changes on the heat load were applied to the process.
Performance of the state estimator is fast and precise, and the heat load is estimated
immediately after its change. Performance of the controller is also displayed in the same
figure. The temperature excursions, due to the heat load applied, are cancelled around 1.99
K in all the different operational zones, exhibiting a robust behaviour of the regulator.

More experiments with even stronger variations in the heat load were performed in
order to validate the non-linear predictive controller. Heat load steps of 24 W (0.8 W/m)
for the NMPC and about 20 W for the PI are shown in FIGURE 5 for comparison. Despite
the higher heat load applied to the NMPC its performance is better than the PI.

CONCLUSIONS

The IT-HXTU, a LHC full scale prototype, was employed as a test-bed of what
advanced non-linear control do for improving for cryogenic process regulation over a
classical regulation with PID control.

The non-linear process model construction gave a better understanding of the process
and helped to improve the regulation strategies by means of the simulation. The proposed
regulation structure is based on a non-linear predictive controller algorithm combined with
a state estimator.

Running in the optimal operating zone permits an optimal helium usage during
transients, relaxes the cryogenic needs in terms of pumping power and instrumentation

FIGURE 4. Non-linear state estimator performance: Heat load steps (12 Watts)



8

accuracy and improves the overall installation safety by reducing temperature variations
which can provoke a quench on the superconducting magnets with the subsequent
undesirable shut down of the LHC machine.

The validation of the non-linear predictive control methodology allowed defining a
common regulation structure valid along the LHC ring machine independently of the
precise location of the equipment and without the need for individual controller tuning.
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