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Simple Summary: Immunome in Sporadic Colorectal Cancer as source for biomarkers. Hence,
a self-assembled protein array has been designed and developed to perform a serum screening
to determined specific immune response against tumor antigens proteins as potential diagnostics
biomarker panel.

Abstract: Sporadic Colorectal Cancer (sCRC) is the third leading cause of cancer death in the Western
world, and the sCRC patients presenting with synchronic metastasis have the poorest prognosis.
Genetic alterations accumulated in sCRC tumor cells translate into mutated proteins and/or abnormal
protein expression levels, which contribute to the development of sCRC. Then, the tumor-associated
proteins (TAAs) might induce the production of auto-antibodies (aAb) via humoral immune response.
Here, Nucleic Acid Programmable Protein Arrays (NAPPArray) are employed to identify aAb in
plasma samples from a set of 50 sCRC patients compared to seven healthy donors. Our goal was to
establish a systematic workflow based on NAPPArray to define differential aAb profiles between
healthy individuals and sCRC patients as well as between non-metastatic (n = 38) and metastatic
(n = 12) sCRC, in order to gain insight into the role of the humoral immune system in controlling
the development and progression of sCRC. Our results showed aAb profile based on 141 TAA
including TAAs associated with biological cellular processes altered in genesis and progress of sCRC
(e.g., FSCN1, VTI2 and RPS28) that discriminated healthy donors vs. sCRC patients. In addition,
the potential capacity of discrimination (between non-metastatic vs. metastatic sCRC) of 7 TAAs
(USP5, ML4, MARCKSL1, CKMT1B, HMOX2, VTI2, TP53) have been analyzed individually in an
independent cohort of sCRC patients, where two of them (VTI2 and TP53) were validated (AUC
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~75%). In turn, these findings provided novel insights into the immunome of sCRC, in combination
with transcriptomics profiles and protein antigenicity characterizations, wich might lead to the
identification of novel sCRC biomarkers that might be of clinical utility for early diagnosis of the
tumor. These results explore the immunomic analysis as potent source for biomarkers with diagnostic
and prognostic value in CRC. Additional prospective studies in larger series of patients are required
to confirm the clinical utility of these novel sCRC immunomic biomarkers.

Keywords: metastases; colorectal cancer; auto-antibody profiling; tumor-associated antigen proteins;
NAPPArrays; protein antigen array; immunomics

1. Introduction

Sporadic colorectal cancer (sCRC) is the third leading cause of cancer death in the
Western world [1]. To a large extent, this is due to the delayed development of symptoms
and thus delayed diagnosis at the relatively advanced stages of the disease. In fact, early
disease diagnosis leads to significantly higher cure rates due to smaller tumour sizes and
less tumour spread. Overall, 15–25% sCRC patients have metastatic disease at diagnosis
(e.g., synchronous metastasis) [2], most frequently involving the liver. Currently, complete
tumour resection provides the most effective treatment for early-stage sCRC, whereas
complementary chemotherapy and/or local radiotherapy is the only effective approaches
in a specific subset of the patients, including non-metastatic and a subset of metastatic
sCRC patients [3,4].

Current diagnostic approaches for sCRC include invasive approaches (e.g., colonoscopy
and classical histopathology), non-wide accessible imaging techniques (e.g., computerized
tomography-scans (CT-scan) and magnetic resonance imaging (MRI), and molecular ge-
netic techniques, all of which are not well-suited for population-wide screening for early
diagnosis. In contrast, alternative cost-effective approaches based on fecal occult blood
testing, measurement of carcinoembryonic antigen (CEA) serum levels, and/or testing
for KRAS point mutations in liquid biopsies and/or circulating tumoral DNA (ctDNA)
have been adopted or considered for current and future population-based sCRC screening
programs. However, their actual benefit is still a controversial topic, mainly due to the
relatively high rate of both false positive and negative results [5]. Consequently, the search
for an alternative, complementary cost-effective and efficient approaches, suitable for the
diagnostic screening of sCRC patients, still remains a challenge.

Previous studies have shown that different tumor types are associated with (humoral)
auto-immune [6] responses against tumor-associated antigens (TAA) frequently located
in proteins that show altered expression levels, mutations, unique degradation profiles,
misfolding or different post-translational modifications (PTM) (i.e., p53 is acetylated,
phosphorylated, etc.), as well as ectopic locations inside the cell [7,8]. Even more, recent
studies have shown the presence of antibodies against TAA several years before the onset of
the symptoms related to the tumor [9–11]. In line with these findings, Barderas et al. have
found similar humoral response profiles in a murine model of sCRC [11]. In such model,
activation of the immune system triggers the first clinical symptoms, which is directly
associated with the presence and/or increment of auto-antibody (aAb) serum levels [11].
Since auto-antibodies can be detected at early cancer stages, they can be exploited to
increase the percentage of CRC patients diagnosed early. Therefore, the detection of tumor-
associated aAb in the serum/plasma represents an attractive and potentially useful strategy
for (early) diagnostic screening of sCRC, both in suspected patients and in population-wide
screening programs, whenever large panels of aAb markers are simultaneously assessed.

The humoral immune response has been proven to play an important role in CRC.
Indeed, TAAs targeted to autoantibodies cancer patients have been identified by protein-
microarrays-based proteomic techniques [12–14]. Their main advantages include the
simultaneous evaluation of aAb against hundreds to thousands of different proteins us-
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ing a minimally invasive approach in a small volume of sample (e.g., few microliters
of plasma) [15,16]. Unfortunately, the set of proteins that can be found in commercial
microarray are not tailored for TAAs. Therefore, here, it is proposed to design and develop
a customized protein array with the main aim of extending the number of identified TAAs.
The development of in situ cell-free protein expression microarrays such as the Nucleic
Acid Programmable Protein Arrays (NAPPArray), with improved capture and stability of
the proteins linked to the microarray surface, allows analysis of full-length functional hu-
man proteins; therefore, the discovery of new biomarkers using high-throughput formats
has become feasible [17].

Here, we evaluated the potential utility of the NAPPArray technology for fast and
efficient screening of aAb against 2023 (potential) TAAs (as human full-length recombinant
proteins) present in the plasma of sCRC patients. Our results pointed out the existence of
novel of TAAs (correlated with transcriptomic prognosis), that hold potential value for the
diagnostic screening of sCRC and the discrimination between patients with the metastatic
and non-metastatic disease.

2. Materials and Methods
2.1. Patients and Samples

Overall, 57 plasma samples from 7 healthy adults and 50 patients diagnosed with
sCRC between January 2008 and December 2010 (17 males and 33 females; median age
of 72 years, ranging from 27 to 85 years) were prospectively analyzed. All of patients are
näive for any oncotherapy, free of other immunopathologies, no alimentary intolerance and
common allergies. All patients were diagnosed and classified according to the WHO criteria
at the Departments of Surgery and Pathology of the University Hospital of Salamanca
(HUS, Salamanca, Spain). Informed consent was given by each individual prior to entering
the study and the study was approved by the local ethics committee of the HUS. In all
cases, peripheral blood (PB) samples (10 mL/case) were obtained in K3-EDTA coated tubes,
prior to any therapy was administered to the patients. Immediately after collection, PB
samples were centrifuged, and the plasma was stored at −80 ◦C until analyzed.

Around one-fourth (12/50; 24%) of the patients presented synchronic metastases,
while the remaining 38 cases (76%) had non-metastatic tumors. The most relevant clinical
and laboratory patient data recorded at diagnosis are summarized in Table 1. At the time
of closing this study, the median follow-up was 45 months (range: 0 to 101 months).

Table 1. Clinical and biological characteristics of non-metastatic (n = 38) vs. metastatic (n = 12) sporadic colorectal cancer
(sCRC) patients.

Clinical Characteristics Metastatic sCRC
(n = 12)

Non-Metastatic sCRC
(n = 38) p-Value Total Cases

(n = 50)

Age (years) 63 (28–76) 71 (27–85) NS 72 (28–85)

Gender

Female 6 (50%) 27 (72%)
NS

33 (67%)
Male 6 (50%) 11 (28%) 17 (33%)

Tumor Localization

Rectum 6 (50%) 23 (61%)
NS

29 (59%)
Left colon 2 (33%) 1 (3%) 3 (6%)

Right colon 4 (17%) 14 (36%) 18 (35%)

Histological grade

Well-differentiated 3 (53%) 1 (3%)
p = 0.03

4 (8%)
Moderate- differentiated 2 (28%) 10 (26%) 12 (40%)

Poorly- differentiated 2 (29%) 12 (31%) 14 (47%)
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Table 1. Cont.

Clinical Characteristics Metastatic sCRC
(n = 12)

Non-Metastatic sCRC
(n = 38) p-Value Total Cases

(n = 50)

Lymph node status (TNM)

pN0 4 (33%) 18 (46%)
NS

22 (43%)
pN1 6 (50%) 16 (44%) 22 (45%)
pN2 2 (17%) 4 (10%) 6 (12%)

Tumor Size (cm) 5 (2–11) 3,5 (1,7–7) NS 4.7 (1.7–11)
Serum CEA (ng/mL) * 11.8 (1.2–344) 4.9 (0.9–90) NS 5.5 (0.9–344)

N. of Deaths 9 (75%) 9 (23%) p = 0.001 18 (35%)
Median OS (months) * 14 (0–64) 22 (0–40) p = 0.001 Not reached

Results expressed as number of cases (percentage) or * median (range); NS: statistically not significant (p > 0.05); F: female; M: male; CEA:
carcinoembryonic antigen; OS: overall survival.

2.2. Nucleic Acid Programmable Protein Array (NAPPArray) Performance and Serum
Screening Conditions

The NAPPArray designed here contained 2023 unique cDNAs encoding for an iden-
tical number of (antigenic) human proteins (full-length recombinant proteins verified
by sequencing) related to cancer and selected from the Medgene (http://medgene.med.
harvard.edu/MEDGENE/, accessed on 18 April 2014) and Biogene (http://biogene.med.
harvard.edu/BIOGENE/databases, accessed on 18 April 2014) (Table S1) as they include
information about potential TAAs. In addition, multiple negative and positive controls
have been included such as GST, human IgG, EBNA, empty cDNA, among others (Table S1)
to decipher any patients subgroups. For quality assurance, the constructed NAPPArray
also contained positive and negative controls. These arrays were designed and prepared
following standard operating procedures (SOPs) at the Biodesign Institute of Arizona
(Tempe, AZ, USA) according to the techniques described by Ramachandran et al. (17) and
adapted by Manzano-Roman et al. [18] and Henjes et al. [12] (see Supplementary Materials
and Section 2).

Quality control (QC) evaluations of the NAPPArrays were performed to ensure high
reproducibility and robustness of the proteins displayed on the array via in vitro tran-
scription/translation (IVTT) [9,10,18]. Therefore, the overall cDNA linked to each well
in the array was assessed by Picogreen staining (Invitrogen, Paisley, UK) following the
instructions of the manufacturer; in turn, in situ protein expression levels were evaluated
by the TNT T7 Coupled Reticulocyte Lysate cell-free expression system (Promega, Madison,
WI, USA), as described elsewhere [9,10,18] (Supplementary Materials and Section 2).

For the detection of aAb, NAPPArrays were incubated overnight at 4 ◦C with the
1/600 (v/v) diluted plasma samples with continuous gentle mixing [9,12,14]. To reveal the
aAb-protein conjugation, the NAPPArrays were incubated with anti-human-IgG antibodies
coupled to horseradish peroxidase protein (HRP), followed by the amplification of the
signal using the tyramide signal amplification (TSA) reagent (PerkinElmer, Shelton, CT,
USA), following the manufacturer’s instructions (Figure S1). Finally, these arrays were
scanned for image visualization using a Genepix 400B (Axon Instruments, Sunnyvale, CA,
USA) scanner.

2.3. Identification of Differential aAb Serum Profiles Across the Analyzed Samples

Scanned NAPPArray images were analyzed using the Genepix Pro 6.0 (Axon Instru-
ments, Sunnyvale, CA, USA) image analysis software. During analysis, data intensity at
532 nm was recorded. Raw data were normalized as follows: (1) firstly, a background
correction was used to eliminate unspecific fluorescence for each spot in the array, back-
ground levels were estimated as the first quartile of the values obtained for the empty
spots (nonspot) and then (2) the value for each spot was normalized by calculating the
ratio between each corrected value (from step 1) and the median of all spots that contained
the empty pANT7_cGST vector.

http://medgene.med.harvard.edu/MEDGENE/
http://medgene.med.harvard.edu/MEDGENE/
http://biogene.med.harvard.edu/BIOGENE/databases
http://biogene.med.harvard.edu/BIOGENE/databases
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Then, the normalized data sets were employed to decipher h for the potentially
different aAb plasma profiles, considering the following sample groups: healthy donors
vs. sCRC, and non-metastatic sCRC vs. metastatic sCRC. Firstly, we identified the aAbs
presented in the plasma samples analyzed, considering them as positive aAbs if their
mean normalized value was higher than (mean value + 3SD) empty pANT7_cGST vector
normalized value. After that, these positive aAbs were evaluated by using the non-
parametric Mann-Whitney U (MW) test (statistical significance set at p < 0.05), via the
MultiExperiment Viewer 4.5.0 (MeV) (software available at www.tm4.org, accessed on
13 November 2009), in order to identify a set of aAbs that might discriminate between
sCRC patients vs. healthy donors. In addition, the immunome of these sCRC patients was
defined based on the presence of aAbs accomplishing the following four criteria: (i) to
show distinct aAb profiles (p < 0.05) in the univariate analysis (Mann–Whitney U test), (ii)
no presence in the healthy-donor group, (iii) to be detected in ≥2 sCRC individual samples,
and (iv) the changes observed in the normalized fluorescence intensity data of aAb for
the sCRC patients (group 2) included in the study were higher than the corresponded
normalized signal in the healthy donors (group 1), the threshold was established in fold
change (FC) values >1, calculated FC for each TAAs and case as follows:

FC = log 2
[(

group 2
median group 1

)
+ 1

]
(1)

Finally, in order to identify the differential aAb profile—that might distinguish be-
tween sCRC patient sub-groups at diagnosis (non-metastatic vs. metastatic sCRC)—a
non-parametric Mann-Whitney U (MW) test (p < 0.05) was applied to this set of aAbs
previously defined and included as part of the sCRC immunome. Additionally, the changes
observed in the normalized fluorescence intensity data of aAbs for the non-metastatic
sCRC patients (group 1) vs. metastatic sCRC (group 2) were calculated according to the FC
described above.

2.4. Functional In Silico Analysis

A protein network analysis was performed by using STRING tool (version 10.5) in
order to identify the associations of all the TAAs identified and that could be included in
this sCRC immunome. Moreover, the TAA candidates were compared in the Auto-antigen
Atlas data Base AAgAtlas (version 1.0) to check if any of these TAAs have been previously
reported in other solid tumors or other pathologies [19].

The role in biological processes and subcellular localization of this set of TAAs (defin-
ing the sCRC immunome) were further screened by a functional enrichment analysis (FEA)
performed using the DAVID functional annotation bioinformatics tool for microarrays
analysis (Bioinformatics Resources, version 6.7) and the Gene Ontology (GO)—annotation
spaces for biological processes (GOTERM_BP), cellular components (GOTERM_CC) and
molecular functions (GOTERM_MF)—databases; the stringency was set at medium to
generate the final report. Those TAAs presenting a relevant role (e.g., highly significant in
the gene ontology analysis) were further reviewed in the existing databases to depict their
involvement in the sCRC. In order to generate and visualize the networks between the GO
terms resulted of FEA, the Cytoscape software (version 3.3.0) were employed.

2.5. Feature Selection Algorithms and Linear Models

A regularized version of the logistic regression, called LASSO [20], was used to model
the relation between proteins and patients classification in groups (e.g., metastatic versus
non-metastatic). The key idea behind the LASSO family methods is to include in the
cost function, apart from the regression term, a penalization expressed as a function of
the values of the parameters. Intuitively, by means of this penalization, one charges a
price for the ‘amount of used’ parameters (associated with the proteins). Accordingly, the
parameters relative importance is minimized in the cost function. The algorithms search for

www.tm4.org
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optimal coefficients, each associated with one protein. The higher the value of a coefficient,
the more important the associated protein is in explaining the outcome.

In this context, each patient is represented as a point in a linear vector space, aAbs are
the variables in the linear regression model, and we seek a hyperplane to divide the two
groups, i.e., metastatic and non-metastatic patients. The LASSO algorithm was the chosen
constrained least squares algorithm used in order to determine which variables, or aAbs,
should be considered to contain most of the information necessary to separate the samples.

For each patient, the data set provides a categorical variable mapped as +1 for
metastatic and −1 for non-metastatic clinical condition. We calculated the error between
the categorical variable and the outcome of the linear regression model, which is a function
of the aAb concentrations. The chosen algorithms are known to provide a sparse set of
coefficients of the separating hyperplane. Due to the small number of samples available, we
used leave-one-out cross-validation, where in each iteration a single subject with metastasis
was set aside for validation, and the training was carried out with the remaining eleven
metastatic subjects, and randomly selected eleven non-metastatic patients. Validation used
the training parameters obtained during training but tested it on the left-out patients not
used for training, i.e., the patient with metastasis left out and the 28 non-metastatic patients.
This procedure was repeated for all metastatic patients; therefore, performance metrics
were calculated for twelve rounds of validation.

2.6. Data Visualization

Clustering analysis is performed by Ward Method with 2 within the pathology
(metastatic vs. non-metastatic) vs. healthy donors; all pathologies (all of them in one
single group) vs. healthy donors (as controls). In all the data analysis, several biostatistical
approaches (camberra distance, silhouette distance, k-mean cluster, canonical biplots, lo-
gistic regression, random forest based multiclass, receiver operating characteristics curve
(ROC)) were studied with R-studio interface.

2.7. Validation of a Featured Panel of TAAs

To confirm the diagnostic value of our results a total of 6 (USP5, MARCKSL1, CKMT1B,
HMOX2, VIT2, TP53) out of 141 TAAs included in the sCRC immunome as well as a positive
control (EBNA) were validated by ELISA assays performed according to the techniques
described by Henjes et al. [12]. A total of 57 plasma samples from 7 healthy adults (negative
colonoscopy) and 50 patients diagnosed with sCRC included in this validation were
provided by Spanish National DNA Bank Carlos III (BNADN, University of Salamanca,
Salamanca, Spain). Prior to entering the study, patients gave their written informed consent
to participate according to the Declaration of Helsinki; the study protocol was approved by
the External Ethical Committee of the Spanish National DNA Bank Carlos III.

3. Results
3.1. Performance of the NAPPArray for sCRC-Associated Plasma aAb Screening

Prior to plasma screening, QC assays of NAPPArray were performed in order to assess
the reproducibility and robustness of the NAPPAarray platform in the screening of aAb
presented in sCRC plasma samples. Detection of printed cDNAs (encoding full-length
recombinant C-terminus GST-tagged proteins) containing TAAs (as it is described in the
material and methods section) was accomplished to verify the presence of all cDNAs
deposited on the NAPPArray. Spots containing cDNA displayed significantly higher-
intensity values vs. negative control spots (e.g., those without cDNA) which showed no
signal. Of note, a high correlation (R2 > 0.85) was observed for the stained cDNA on the
NAPPArrays assayed, further confirming the reproducibility and robustness of the printed
microarrays (Figure 1A).
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correlation of two different arrays of cDNA stained assessment that illustrate the reproducibility of assays. (B) corresponds
to high-density NAPPArray displaying 2164 antigenic tumoral proteins included in this study. cDNA stained at described
in Section 2; IVTT protein cell-free expression was detected by the α-GST monoclonal antibody. (C) shows the relationship
between cDNA and protein expressed in NAPPArray platform represented by the histogram of expression total signal
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After IVTT protein expression, the presence of in situ expressed carboxy-GST tagged
recombinant proteins was confirmed by the tag detection with an anti-GST tag monoclonal
mouse antibody (Figure 1B). Thus, in situ expressed (human) proteins were detected in
>92% of the spots containing cDNA (encoding human recombinant proteins); in contrast,
the negative control spots (Figure 1C) showed no protein expression as expected. In
summary, these set of NAPPArrays, containing >2000 TAAs, showed a high reproducibility
both within individual arrays and among different arrays with low variations (CV < 5%)
(e.g., “day-to-day” or “zone”).
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3.2. Identification of aAb Profiles in Healthy Donors vs. sCRC Plasma Samples

A cohort of 57 plasma samples from 7 healthy donors (with negative colonoscopy)
and 50 sCRC patients were screened for aAb directed against the IVTT expressed proteins
displayed on the NAPPArray. Overall, the detection of plasma aAbs-against the displayed
TAAs- was feasible by the workflow with NAPPArray technology depicted in Figure 2. The
aAbs were defined considering the normalized signal values (>mean of the normalized
values of empty pANT7_cGST vector spots + 3SD).
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Figure 2. Detection of aAbs on NAPPAarray. (A) Illustrates a representative slide image showing the antibody reactivity
against TAAs included on the NAPPArray. aAbs against tumor antigens are highlighted in red. (B) Corresponds to scatter
plot of the total intensity of aAbs against all the TAA contained in the NAPPArray. Red line corresponds to mean of
the normalized values of empty pANT7_cGST vector spots + 3SD and the positive aAbs defined taking into account the
normalization values (>mean of the normalized values of empty pANT7_cGST vector spots + 3SD).

Thus, a total of 1928 out of the 2023 TAAs displayed in the array showed immunore-
activity with plasma aAb in at least one analyzed case in this study. The global number
of aAbs identified above the threshold ranged from 48 (2%) to 1288 (64%) aAbs (Table 2).
In addition, a great variability of unique TAAs was detected for each patient group and
healthy donors. Accordingly, the number of immunoreactivity to TAAs hits per patient
was slightly higher in sCRC patients (median = 29%) vs. healthy donors (median = 20%)
(Figure 3A). Furthermore, metastatic sCRC was the group with the largest number of
immunoreactivity TAAs hits (median = 31%) vs. non-metastatic sCRC (median = 27%)
(Figure 3A). Considering the distribution of those TAAs by sCRC patients/healthy donor
groups, our results showed similar immunoreactivity ratios between healthy controls
vs. sCRC patients (Figure 3B), healthy controls vs. metastatic sCRC patients (Figure 3C),
healthy controls vs. non-metastatic sCRC patients (Figure 3D) as well as non-metastatic vs.
metastatic sCRC patients (Figure 3E).
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Table 2. aAb against unique TAA proteins (n = 2023) included in the NAPPArray identified in each
plasma samples included in the study from 7 healthy donors and 50 sCRC patients.

Sample ID Diagnosis N◦ of aAb % of aAb

1 sCRC 862 43
2 sCRC 846 42
3 sCRC 822 41
4 sCRC 191 9
5 sCRC 110 5
6 sCRC 466 23
7 sCRC 609 30
8 sCRC 832 41
9 sCRC 704 35
10 sCRC 285 14
11 sCRC 497 25
12 sCRC 851 42

13 sCRC 249 12
14 sCRC 717 35
15 sCRC 227 11
16 sCRC 646 32
17 sCRC 1040 51
18 sCRC 447 22
19 sCRC 593 29
20 sCRC 174 9
21 sCRC 1228 61
22 sCRC 1288 64
23 sCRC 471 23
24 sCRC 1225 61
25 sCRC 615 30
26 sCRC 458 23
27 sCRC 521 26
28 sCRC 864 43
29 sCRC 266 13
30 sCRC 1150 57
31 sCRC 813 40
32 sCRC 608 30
33 sCRC 671 33
34 sCRC 1141 56
35 sCRC 700 35
36 sCRC 381 19
37 sCRC 1310 65
38 sCRC 217 11
39 sCRC 327 16
40 sCRC 562 28
41 sCRC 541 27
42 sCRC 755 37
43 sCRC 557 28
44 sCRC 415 21
45 sCRC 720 36
46 sCRC 93 5
47 sCRC 363 18
48 sCRC 505 25
49 sCRC 48 2
50 sCRC 381 19
51 Healthy donor 715 35
52 Healthy donor 398 20
53 Healthy donor 880 43
54 Healthy donor 1149 57
55 Healthy donor 229 11
56 Healthy donor 278 14
57 Healthy donor 345 17
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sCRC (E). 

3.3. Determination of Differential aAb Profiles 
Bearing in mind the aAb heterogeneity within analyzed groups of samples, the 

Mann-Whitney test was performed (as conventional biostatistics analysis) to distinguish 
aAb profiles that might discriminate healthy controls vs. sCRC patients, as well as in non-
metastatic vs. metastatic sCRC patients. In this sense, our results showed that 141 aAbs 
accomplished the four criteria described in the material and methods section resulting in 
the sCRC immunome (Table S2). A total of 67 out of these 141 aAbs (Table 3) had statistical 
significances with a value of lower than 0.01, where aAbs against corresponding the high-
est statistic values (p < 0.01), being aAbs against C9orf80, GORASP2, HMOX2, KIF9 and 
TEX11 (Figure 4) the most significant (p < 0.001). The aAbs constituting the sCRC im-
munome presented mean FC values > 1.5, with more than 78% of the sCRC patients show-
ing FC values > 1 (Table S3). 

Table 3. aAbs profile against 67 TAAs with statistical significance (p < 0.01) that might discriminate healthy donors (negative 
colonoscopy) (n = 7) vs. sCRC patients (n = 50). None of these TAAs have been detected as positive aAb in healthy donors. 

TAA ID p-Value (U-Mann-Whitney) 
N° sCRC (n = 50) with aAb 

Positive 
Fold Change (FC) 

Median FC sCRC % sCRC > FC1 
TEX11 0.0005 8/50 2.6 90 

GORASP2 0.0007 2/50 3.1 82 
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Figure 3. Distribution of positive aAbs (n = 1928). (A): Samples’ immunoreactivity represented by the percentage of
all positive hits detected in the NAPPArray for each group of samples. (B–E): The figures show the pair-wise group
comparisons of the percentage of reactivities samples per antigen, healthy controls vs. sCRC patients (B), healthy controls
vs. metastatic sCRC patients (C), healthy controls vs. non-metastatic sCRC patients (D), metastatic sCRC vs. no-metastatic
sCRC (E).

3.3. Determination of Differential aAb Profiles

Bearing in mind the aAb heterogeneity within analyzed groups of samples, the Mann-
Whitney test was performed (as conventional biostatistics analysis) to distinguish aAb
profiles that might discriminate healthy controls vs. sCRC patients, as well as in non-
metastatic vs. metastatic sCRC patients. In this sense, our results showed that 141 aAbs
accomplished the four criteria described in the material and methods section resulting in
the sCRC immunome (Table S2). A total of 67 out of these 141 aAbs (Table 3) had statistical
significances with a value of lower than 0.01, where aAbs against corresponding the highest
statistic values (p < 0.01), being aAbs against C9orf80, GORASP2, HMOX2, KIF9 and TEX11
(Figure 4) the most significant (p < 0.001). The aAbs constituting the sCRC immunome
presented mean FC values > 1.5, with more than 78% of the sCRC patients showing FC
values > 1 (Table S3).

To determine the aAbs that might discriminate between non-metastatic and metastatic
sCRC patients, we analysed the distribution of the sCRC immunome (141 aAbs) by non-
metastatic and metastatic sCRC patients identifying similar immunoreactivity ratios for
both sCRC groups (metastasic and non-metastatic) (Figure 5A). Bearing in mind these
results, those 141 aAbs were included in the Mann-Whitney test in order to identify
the differential aAb profile of non-metastatic and metastatic sCRC. A small set of aAbs
(such as NUP54, Corf80, FSCN1, OLR1, DLAT, RPS28, among others) presented statistical
significance (p < 0.05) and might potentially distinguish non-metastatic sCRC vs. metastatic
sCRC (Figure 5B). Of note, these aAbs presented FC values lower than 1 and nearly half of
the metastatic sCRC samples showed FC values > 1 (Table S4).
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Table 3. aAbs profile against 67 TAAs with statistical significance (p < 0.01) that might discriminate healthy donors (negative
colonoscopy) (n = 7) vs. sCRC patients (n = 50). None of these TAAs have been detected as positive aAb in healthy donors.

TAA ID
p-Value

(U-Mann-Whitney)
N◦ sCRC (n = 50) with

aAb Positive

Fold Change (FC)

Median FC sCRC % sCRC > FC1

TEX11 0.0005 8/50 2.6 90
GORASP2 0.0007 2/50 3.1 82

C9orf80 0.0007 3/50 3.9 92
HMOX2 0.0008 13/50 3.0 92

KIF9 0.0008 14/50 2.7 92
ICAM2 0.0012 16/50 2.4 94

MARCKSL1 0.0012 10/50 2.4 88
RB1 0.0012 2/50 2.6 92
SPP1 0.0012 3/50 2.8 86
STC2 0.0013 10/50 2.0 84

BHMT2 0.0014 10/50 2.2 86
D21S2056E 0.0016 10/50 2.2 84

DLAT 0.0016 2/50 2.3 86
CKMT1B 0.0017 27/50 2.6 86
GTF2H1 0.0017 8/50 2.3 82
ALDOA 0.0019 8/50 2.0 88
COX11 0.0020 14/50 2.4 88
RPL11 0.0020 2/50 2.4 86
ASB3 0.0020 8/50 2.3 84
PRCP 0.0024 21/50 1.9 86
PDEF 0.0024 10/50 2.2 86

ANP32A 0.0024 2/50 2.3 82
GNAI3 0.0026 5/50 2.5 86
HBG1 0.0026 2/50 3.5 84
ARHI 0.0028 11/50 1.9 86
RCV1 0.0028 3/50 2.9 86

RAB8A 0.0028 5/50 2.4 84
GDEP 0.0030 11/50 2.2 82
PLAC1 0.0030 7/50 2.0 84

HSD17B3 0.0030 2/50 2.3 80
SH3BP1 0.0033 3/50 2.0 84

USP5 0.0033 2/50 2.1 82
TCEAL1 0.0033 5/50 2.5 84
KPNA6 0.0035 18/50 2.3 84

Progranulin 0.0038 4/50 1.8 86
CHODL 0.0038 4/50 2.2 86
KCNE2 0.0041 13/50 2.0 82

SERPINA5 0.0041 5/50 2.2 80
SLCO4A1 0.0041 4/50 2.5 80

SDPR 0.0041 10/50 1.8 86
JUP 0.0041 3/50 2.5 82
FRK 0.0041 6/50 2.1 84

DDX39 0.0044 2/50 2.1 80
PSAP 0.0048 2/50 2.1 84

SCARB1 0.0048 2/50 2.6 84
AMY2A 0.0052 9/50 2.1 84
BECN1 0.0056 16/50 2.0 84

ST14 0.0056 16/50 1.7 80
LDHB 0.0056 8/50 2.3 84
SNX10 0.0056 2/50 2.1 82

PSTPIP1 0.0060 17/50 2.1 84
SLC6A1 0.0065 6/50 2.0 78
HM13 0.0070 10/50 1.7 84
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Table 3. Cont.

TAA ID
p-Value

(U-Mann-Whitney)
N◦ sCRC (n = 50) with

aAb Positive

Fold Change (FC)

Median FC sCRC % sCRC > FC1

RHOH 0.0070 7/50 1.9 82
KIF22 0.0075 5/50 2.4 78
SYTL1 0.0075 4/50 2.1 80
Mage3 0.0075 10/50 1.9 82

HIST1H3D 0.0075 4/50 2.3 82
RWDD1 0.0080 9/50 2.1 80

RILP 0.0080 6/50 2.0 76
RPL35 0.0080 4/50 1.9 82

PLAGL1 0.0086 21/50 1.6 82
DDX56 0.0086 9/50 1.7 84

CTNNA1 0.0086 9/50 2.2 82
BET1 0.0086 4/50 2.0 78

HLA-DOB 0.0093 28/50 1.6 80
HSPC047 0.0093 4/50 1.9 80
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Taking into consideration the analysis of protein function and subcellular localization, it 
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Figure 5. Identification differential aAbs profile between metastatic vs. non-metastatic sCRC. (A) Shows volcano plot of all
TAAs presented (n = 141) in the sCRC analyzed samples. (B) Represents normalized intensity data of aAbs against TAAs
with statistical significance (p < 0.05) from metastatic sCRC (n = 12) and no-metastatic sCRC patients (n = 38). Notched-boxes
extend from the 25th to 75th percentile values; the lines in the middle and vertical lines correspond to median values and
the 10th and 90th percentiles, respectively. Outlier cases, identified as cases between 1.5–3 and/or > 3 times the interquartile
range, are represented by circles and stars, respectively.

3.4. Functional In Silico Analysis of the Differential aAb Profiles Against TAAs in sCRC Patients

According to the results described above, the content of sCRC immunome might be
defined by 141 TAAs (screened with NAPPAarrays); thus, any functional relation between
them could suggest novel therapeutic targets. In fact, 56% of TAAs (79 out of 141) have
been related between them through a different kind of interaction as reflected from FEA
analysis (Table 4).

The comparisons between 141 TAAs that generated sCRC immunome and the auto-
antigens included in the AAgAtlas database revealed that a small groups of TAAs (PIXT3,
YBX1, DRD2, SCARB1 SERPING1, TPTE, DLAT, and SPP1) were found to be overlap-
ping between the lists, furthermore, only four, SERPING1, TPTE, DLAT, and SPP1, were
associated with oncologic disorders [21–23].

The evaluation of functional in silico analysis showed that top five subcellular local-
ization of the 141 aAbs included in the sCRC immunome (Table S2) and revealed that
these TAA proteins were mainly located in three distinct cellular compartments (Table 4):
extracellular compartment, cytoplasm, and membrane; most frequently presented in the ex-
tracellular location (46 TAAs) and cytoplasm (42 TAAs) compared to membrane (18 TAAs).
The results of functional enrichment analysis for the biological functions of these TAA
proteins revealed that 7% (10 out of 141) of TAAs (Table 4) were mainly related to the
different steps of translational process, where most of them belong to the ribosomal protein
family (Table 4). In this line, the most relevant molecular function of these TAAs were
protein binding, that involved 61% (86 out of 141) of unique TAAs, vs. cell–cell adhesion 6%
(8 out of 141) of TAAs, both clearly involved in the tumoral microenvironment. Taking into
consideration the analysis of protein function and subcellular localization, it is appropriate
to highlight that 55 out of 109 unique TAAs have been previously reported as proteins
associated with sCRC [24–27].
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Table 4. Functional Enrichment Analysis of detected TAAs with statistical significance (p > 0.05) between healthy donors vs.
sCRC; non-metastatic sCRC vs. synchronic metastasis sCRC.

Healthy Donors vs. Pathological sCCR

GO Term Function p-Value TAAs Number % TAA TAAs ID

GO:0006974 Response to DNA
damage stimulus 0.0011 7 14.6 SUMO1, UBE2A, CCNH, GTF2H4,

MLH1, GTSE1, RAD17

GO:0006281 DNA repair 0.0020 6 12.5 SUMO1, UBE2A, CCNH, GTF2H4,
MLH1, RAD17

GO:0033554 Cellular response to
stress 0.0087 7 14.6 SUMO1, UBE2A, CCNH, GTF2H4,

MLH1, GTSE1, RAD17

GO:0006259 DNA metabolic
process 0.0051 7 14.6 SUMO1, UBE2A, CCNH, GTF2H4,

MLH1, IGF1, RAD17

GO:0006950 Response to stress 0.0053 13 27.1

UBE2A, CCNH, GTF2H4, LYZ,
MLH1, IGF1, SMAD1, GTSE1,

SUMO1, DARC, CA2, ENTPD2,
RAD17

GO:0051716 Cellular response to
stimulus 0.0143 8 16.7 SUMO1, UBE2A, CCNH, GTF2H4,

MLH1, SMAD1, GTSE1, RAD17

GO:0009056 Catabolic process 0.0158 10 20.8
ALDOA, SUMO1, UBE2A, CCNH,

LYZ, GTF2H4, MLH1, SAE1,
PSME3, ENTPD2

GO:0006367

Transcription
initiation from RNA

polymerase II
promoter

0.098 3 6.3 MED4, CCNH, GTF2H4

GO:0044265
Cellular

macromolecule
catabolic process

0.0266 7 14.6 SUMO1, UBE2A, CCNH, GTF2H4,
MLH1, SAE1, PSME3

GO:0042770
DNA damage

response, signal
transduction

0.0268 3 6.3 MLH1, GTSE1, RAD17

GO:0016070 RNA metabolic
process 0.0278 8 16.7 MED4, CCNH, GTF2H4, MLH1,

WBP11, SMAD1, SCGB1A1, RPS7

GO:0006352 Transcription
initiation 0.0287 3 6.3 MED4, CCNH, GTF2H4

GO:0009892 Negative regulation
of metabolic process 0.0362 7 14.6 RPS26, SUMO1, MLH1, PSME3,

SMAD1, SCGB1A1, RAD17

GO:0010605
Negative regulation
of macromolecule
metabolic process

0.0280 7 14.6 RPS26, SUMO1, MLH1, PSME3,
SMAD1, SCGB1A1, RAD17

GO:0009057 Macromolecule
catabolic process 0.0364 7 14.6 SUMO1, UBE2A, CCNH, GTF2H4,

MLH1, SAE1, PSME3

GO:0006414 Translational
elongation 0.0411 3 6.3 RPS26, RPL35, RPS7

GO:0044248 Cellular catabolic
process 0.0418 8 16.7 SUMO1, UBE2A, CCNH, GTF2H4,

MLH1, SAE1, PSME3, ENTPD2

GO:0014902 Myotube
differentiation 0.0498 2 4.2 CAST, IGF1

GO:0030901 Midbrain
development 0.0498 2 4.2 SMAD1, PITX3
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Table 4. Cont.

Non-metastatic sCRC vs. Synchronic Metastasis sCRC

GO term Function p-value Aab number % Aab Aab ID

GO:0007548 Sex differentiation 0.0209 3 13.0 HSD17B3, EIF2B2, TEX11

GO:0045137
Development of
primary sexual
characteristics

0.0151 3 13.0 HSD17B3, EIF2B2, TEX11

GO:0006833 Water transport 0.0236 2 8.7 AQP5, AQP3

GO:0042044 Fluid transport 0.0250 2 8.7 AQP5, AQP3

GO:0048513 Organ development 0.0366 7 30.4 PFN1, CRIP2, FHL3, HSD17B3,
EIF2B2, TEX11, TIMP1

Concerning the differential TAAs proteins which can discriminate between non-
metastatic and metastatic sCRC (Table 4), the subcellular localization is quite heterogeneous,
where most of them are located at the nucleus (NUP54 and C9orf80) and cytosol (FSCN1
and RPS28). Regarding biological process, none of the TAA proteins were involved in the
same or related procedure (Table 4). Conversely, four (C9orf80, FSCN1, OLR1, and RPS28)
out of six TAA proteins were related to protein binding (Table 4).

3.5. External Evaluation of a Potential Panel of aAbs as sCRC Useful Biomarkers

As an alternative attempt to quantify the importance of individual protein markers for
discriminating between metastatic and non-metastatic sCRC patients, we employed linear
mapping techniques mentioned with feature selection constraints [19,20,28]. Figure 6A,B
shows the progression of accuracy and recall, respectively, averaged for the validation
process, as a function of the increasing number of variables in the active set, i.e., the set
of aAbs the algorithms deemed relevant and given non-zero weights. Although accuracy
provides information about the overall performance of the classification, recall counts only
the performance for metastatic patients. A large recall indicates a small miss probability.
Although the performance of the algorithm was important to establish reliability and
applicability for the given data set, one goal of the study was to establish the usefulness of
variables, or protein markers. In this aspect, if a voting rule should guide our measure of
biomarker relevance, clearly VTI2 (Vesicle transport through interaction with t-SNAREs
homolog 1B)-as TAAs- stands out (Figure 6C). This result could not be obtained from
standard statistical correlation measures, such as p-value, and can be a useful asset for
scientists interested in a more comprehensive evaluation of diagnostic and prognostic
biomarkers for CRC or biomarkers to discriminate +/− metastatic CRC.

Proper tuning of the hyper-parameters of the algorithms yields a different number
of variables with non-zero weights. Figure 6C shows TAAs singled out by the algorithm
when the parameters were tuned for selecting three, two, or only one protein. The number
of correct and incorrect classifications obtained by the algorithm selected by one protein
(VTI2) is summarized in Table S5.

The NAPPA-ELISA assay for VTI2 with an independent cohort of sCRC confirm
these findings and applicability of these lasso algorithms in TAAs discovery (Figure 7A,B).
Additionally, as p53 has been previously reported as TAAs in these tumors, it was also
included in order to test the increased discrimination performance of VTI2 and p53 as
a biomarker panel for metastatic vs. non-metastatic sCRC. P53 and VTI2 proteins are
differently reported in crapome databases (Table S6), which reports a low rate of false
negative detections in VTI2; then, these previous observations help to add more value
to these findings. The cooperative discrimination capacity of this TAAs proteins were
explored by canonical biplots and ROC analysis (Figure 7B,C); where it is differentially
observed that both proteins are displayed in the similar profile as TAAs with a promising
AUC value > 70%.
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4. Discussion

sCRC is one of the most prevalent tumors in the Western world with relatively high
mortality rates, mainly due to delayed diagnosis of the disease. Current clinical guide-
lines include the detection of fecal occult blood (FOB), using the guaiac-based test or
immunochemical methods as the most suitable early diagnostic method for sCRC [5,29,30].
However, several studies have proved the ineffectiveness of FOB due to its high variability
and lack of sensitivity and specificity as other diverse conditions could also lead to fecal
blood [30,31].

In order to develop a more efficient diagnostic screening approach for early diagnosis
of sCRC, multiple attempts have focused on the identification of potential biomarkers
in liquid biopsies and/or ctDNA, particularly in PB, serum and plasma, that could be
easily incorporated in the diagnostic phase [31]. Thus, identification and quantitation
of PB-circulating tumor cells and/or ctDNA have been proposed as a promising tool to
monitor sCRC patients and to evaluate their response to therapy [32,33]. Determination of
free circulating tumoral DNA (ctDNA) present in the serum of sCRC represents another
alternative promising strategy, particularly when based on the identification of KRAS
and BRAF mutations, which could be complementary with immunome in order to better
understand the pathology and to increase the accuracy and precision of the diagnosis and
prognosis [34,35].

Profiling the sCRC immunome, the aAb profile against sCRC TAA present in serum or
plasma, has also emerged as a powerful method to discover potentially useful biomarkers
for the early diagnosis of multiple human solid tumors; mainly due to: (i) the production of
such aAb is a consequence of the activation of tumor-specific humoral immune responses at
the earliest stages of the disease (even prior to its first symptoms and signs), (ii) the stability
of the immunoglobulins in plasma and, (iii) the relatively simplicity of the immuno-assays
commonly used to assess their specificity in clinical laboratories [36–38]. In this regard,
NAPPArrays have become a powerful tool in the identification of differential TAA profiles
by the detection of aAb in different tumoral disorders and several pathologies that could
produce functional proteins in the moment of the assays [10,12,14].

Here, a customized NAPPArray platform, containing 2023 potential TAA proteins,
was used to define the immunome of 50 sCRC patients (12 metastatic sCRC and 38 non-
metastatic sCRC) and 7 healthy donors (negative colonoscopy)). Highly variable numbers
of aAb were detected per case, also including heterogeneous TAA proteins associated to
different aAb profiles, as might be expected due to the high genetic (inter and intra-tumoral)
heterogeneity of sCRC tumors [10,37–39].

In this study, the results showed that 7% (141 out of 2023) of unique TAAs displayed
in the NAPPArray allowed discrimination between healthy donors and sCRC patients.
The functional in silico analysis of the 141 TAAs that generate the sCRC immunome,
showed that the extracellular compartment was the most enriched localization. This might
be expected because tumor cells try to modify the cellular microenvironment secreting
different molecules with the aim of facilitating the growth and the invasion [39,40]; however,
the secreted proteins might become auto-antigens and activate the immune system with
the production of specific aAbs [7,8,38,40]. In a similar study, Barderas et al. found
TOLLIP, MARCKSL1, and FSCN1 in the secretome of sCRC [41] molecules implicated in
carcinogenesis and progression of cancer [42–44]. FSCN1, especially, has been reported as
a potential prognostic biomarker in sCRC patients [45–48], supporting our results.

It should be noted that intracellular signaling related to translational–transcriptional
processes were detected as the principal biological processes related to the TAAs of the
sCRC immunome, most frequently involving ribosomal proteins. These proteins are es-
sential for protein biosynthesis as well as RNA splicing and modification, cell growth,
and proliferation, regulation of apoptosis and development of tumor cells [49–51] via
signaling pathways usually altered in sCRC like Id-1/PI3K/Akt/NF-κB or p53 signal-
ing pathway [49,51,52]. In accordance with our results, Coronell et al. have recently
defined the immunome of colon cancer employing protein microarrays that include aAbs
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against ribosomal proteins (RPS9 and RPL18) [53]. Additionally, Garranzo-Asensio et al.
recently reported a set of 31 proteins with altered expression at mRNA level in a serum
characterization by protein microarrays [54].

Besides the gene expression function, a total of 86 out of 141 immunome TAAs show
protein binding functions involved in the stabilization of the cellular structures, where
22% (19 out of 86) of them are located at plasma membrane [54,55]. Among these proteins,
alterations in the FSCN1 expression levels have been associated with a more aggressive
phenotype and invasion in sCRC mainly due to its involvement in the stability of actin-
based structures that aid in cell motility [56–58]. ANXA9 and ANXA13 belong to a protein
binding family located in the plasma membrane and are involved in different biological
processes such as vesicle transport, calcium signaling, cell growth, and apoptosis [59]. High
expression levels of these proteins have been associated with cell invasion and metastasis in
sCRC as well as adverse prognosis [24,25,60]. Alterations in the expression levels of these
binding proteins might cause instability of the cellular structures and become auto-antigens
in sCRC that have been detected in several studies [41,53,61]; in this line, Cha et al. have
identified 163 pairs of antibody peptides and possible antigenic peptides that belonged to
aberrant proteins [62].

In order to determine the importance of 141 TAA as antigens in other tumors, the
updated version of open AAgAtlas database was consulted to find four TAAs to have
been previously reported as auto-antigens related to solid tumors. Among them, only
two, SERPING1 and SPP1, were associated with gastrointestinal cancers. AAgAtlas stated
the relation of aAb against of SERPING1 with the response to treatment of auto-immune
disease angioedema with gastrointestinal affection [61].

Regarding the aAb profile that might discriminate between non-metastatic and metastatic
sCRC patients, NUP54, C9orf80, FSCN1, OLR1, DLAT, RPS28, VTI2, and p53 proteins were
detected. As an oncogenic protein with high number of point mutations and altered expression
level, p53 has been previously reported and well-documented as TAA in sCRC [9,62]; even
with different PTMs have been previously reported (such as acetylated, phosphorylated,
etc.) which is related to the modifications of HLA presentation and TCR recognition of these
p53 as TAA [9]. FSCN1 has been associated with metastatic processes in sCRC as described
above [47,58]; as well as OLR1, membrane receptor for oxidized low-density lipoprotein, that
is considered as a risk factor to sCRC [63] since the interaction of these molecules increases
the formation of reactive oxygen species, via NF-kB signaling pathway, strongly contributing
to oxidative DNA damage, carcinogenesis development [63–65], and progression of sCRC
disease [66]. Furthermore, Murdocca et al. have postulated this lipoprotein receptor as a
potential drug target for sCRC [67]. However, OLR1 has not been yet reported in the latest
version of Pathology Atlas from the Human Proteome Atlas.

On the other hand, NUP54, c90rf80, RSP28, DLAT have been previously related with
sCRC carcinogenesis and metastatic processes; however, their role as TAAs in sCRC have
not been reported before. Since, TAAs are usually highly dysregulated at protein level
in CRC tissue, we have explored in well-established bioinformatics databases if those
proteins might show any dysregulation in tissue and whether they show any diagnostic
or prognostic ability at transcriptomic and genomic level (i.e., mRNA, copy number vari-
ation, SNPs, etc.). NUP54 is a component of the nuclear pore complex required for the
trafficking across the nuclear membrane, being quite relevant to protein transportation,
mRNA translocation and transportation. NUP54 expression level has been observed to be
dysregulated in sCRC as reported by OncoMX, TCGA in cBioPortal, CPTAC and UALCAN
data bases [20], which is also correlated with the infiltration of immune cells. Similarly,
C9orf80 (INIP) is also a nuclear protein related to protein synthesis and transportation, etc.,
as interacting partner with NABP and NST3 proteins. It is also up-regulated in CRC in
comparison with normal tissue surrounding the tumor cells [55]. Another protein involved
in RNA binding and protein synthesis as part of the ribosome structure is RPS28; which
is mainly located at endoplasmic reticulum and cytoplasm. Furthermore, its expression
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is also dysregulated in sCRC tumor cells as described in OncoMX, TCGA in cBioPortal,
UALCAN and CPTAC [19,28].

In contrast with these proteins mentioned above that were not previously described
as the target of aAbs, DLAT (E2 component of pyruvate dehydrogenase complex) has
been previously reported as an aAb in patients with liver disease, in particular in primary
biliary cirrhosis which manifest with inflammatory obliteration of intra-hepatic bile duct,
leading to liver cell damage and cirrhosis [28]. Additionally, DLAT was found to be a CRC
prognosis marker in the Pathology Atlas from the Human Proteome Atlas (Figure S3). In
the same manner, NUP54, C9orf80 and VTI2 transcripts are listed also as CRC prognosis
markers in the Pathology Atlas from the Human Proteome Atlas (Figure S3). Moreover,
OLR1 and RPS28 are also described as CRC prognosis marker but with a different trend
(Figure S3) because low expression level is reported in the Pathology Atlas in comparison
with DLAT, NUP54, C9orf80 and VTI2 (which displayed a high-expression level) [28].

This panel of eight detected aAbs targeting the TAAs in sCRC, has been identified and
appear in <10% of agarose-based immunoprecipitation experiments registered in CRAPome
(Table S6). Bearing this meta-analysis, CRAPome might be quite useful to remove false
positive aAbs targeting the corresponding TAAs. All of the eight proteins have been
detected ranging from the well-documented p53 as TAAs (52/411 experiments) and RPS28
(182/411 experiments) to VTI2 with very low detection ratio (1/411 experiments).

Therefore, collectively these data show that the identified proteins that are potential
targets of aAbs in sCRC are dysregulated at a genetic and/or protein level in CRC.

Bearing in mind the low number of MS assays detecting VTI2 (as described in
www.crapome.org, accessed on 1 March 2020), and in order to confirm VTI2 as TAAs
in sCRC, an external validation has been performed to evaluate aAbs against VTI2 in
an independent cohort of sCRC; compared with p53 as well-known TAAs in sCRC. As
depicted in Figure 7, VTI2 as aAbs could discriminate between healthy vs. CRC and also
between sCRC patients (metastatic vs. non-metastatic) as p53 aAbs. Furthermore, their
dysregulation seems to play an important role in the alteration of the molecular pathways
and cellular functions involved in the pathology. P53 is well-known and well-characterized
as tumor-antigens and the aAbs against this protein have been identified in CRC and other
solid tumors [62]. Regarding VTI2, it is a protein reported as highly expressed on digestive
mucosa and intestinal epithelium; despite of this, it is the first time, so far, that it is reported
to be a target of aAbs in sCRC, which could open the potential as a biomarker candidate.
The combination of both aAbs, VTI2 and p53, have reported an area under the curve above
70%, which is quite promising for further studies and open the potential to explore the
aAbs as a suitable source of biomarkers.

5. Conclusions

In summary, herein we have described the application of the NAPPArray technology
to identify the immunome of sCRC patients as well as to discover potential aAbs which
might be considered as early diagnostic biomarkers for the sCRC disease, including both
metastatic and non-metastatic conditions; or compatible with diagnostic and/or prognostic
biomarkers in liquid biopsy or ctDNA. In this line, our results identified sCRC immunome
that included 141 aAbs against TAAs as well as aAbs that might distinguish non-metastatic
vs. metastatic sCRC patients. A panel of TAAs (p53, VTI2, NUP54, RPS28, DLAT, C9orf80)
was identified that could be a potential biomarker candidates for early diagnostics and
prognostic evaluation in sCRC. These promising results, in particular p53 and VTI2 as
TAAs, belong to the discovery phase; therefore, further studies are still required to confirm,
validate and verify the potential use of this panel as early diagnostic biomarker in sCRC.

Collectively, these results highlight the usefulness of the presented approach to identify
TAAs with significant diagnostic ability. In addition, these results suggest that the here
defined CRC TAAs might be included in a sCRC blood-based biomarker panel to get a
clinically useful blood-based diagnostic signature for sCRC detection.

www.crapome.org
www.crapome.org
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Atlas [28] showed that VTI2 (A), p53 (B), MARCKSL1 (C), HMOX2 (D), DLAT (E), RSP28 (F) have
been described as a CRC prognosis biomarkers, Table S1: List of TAA proteins displayed in the
NAPPArrays used in this study, Table S2: Positive antibodies for EBNA spots (n = 14) defined taking
into account the normalization values (> mean of the normalized values of pANT7_cGST spots +
3SD), Table S3: aAbs profile against TAAs that exhibited implication to discriminate healthy donors
(n = 7) vs. sCRC patients (n = 50). None of these TAAs have been identified as positive aAb in
healthy donors, Table S4: aAbs profile against TAAs with statistical significance (p < 0.01) that might
distinguish metastatic sCRC (n = 12) vs. Non-metastatic sCRC (n = 38). None of these TAAs have been
identified as positive aAb in healthy donors, Table S5: Results from leave-one-out validation when the
lasso algorithm selects only one variable, Table S6: Identified proteins as potential biomarker panel
of aAbs in sCRC that appear in < 10% of agarose-based immunoprecipitation registered experiments
in CRAPome.
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