14 research outputs found

    Aerobic Vitamin B-12 Biosynthesis Is Essential for Pseudomonas aeruginosa Class II Ribonucleotide Reductase Activity During Planktonic and Biofilm Growth

    Full text link
    Pseudomonas aeruginosa is a major pathogenic bacterium in chronic infections and is a model organism for studying biofilms. P. aeruginosa is considered an aerobic bacterium, but in the presence of nitrate, it also grows in anaerobic conditions. Oxygen diffusion through the biofilm generates metabolic and genetic diversity in P. aeruginosa growth, such as in ribonucleotide reductase activity. These essential enzymes are necessary for DNA synthesis and repair. Oxygen availability determines the activity of the three-ribonucleotide reductase (RNR) classes. Class II and III RNRs are active in the absence of oxygen; however, class II RNRs, which are important in P. aeruginosa biofilm growth, require a vitamin B12 cofactor for their enzymatic activity. In this work, we elucidated the conditions in which class II RNRs are active due to vitamin B12 concentration constraints (biosynthesis or environmental availability). We demonstrated that increased vitamin B12 levels during aerobic, stationary and biofilm growth activate class II RNR activity. We also established that the cobN gene is essentially responsible for B12 biosynthesis under planktonic and biofilm growth. Our results unravel the mechanisms of dNTP synthesis by P. aeruginosa during biofilm growth, which appear to depend on the bacterial strain (laboratory-type or clinical isolate)

    Neutralization of ionic interactions by dextran-based single-chain nanoparticles improves tobramycin diffusion into a mature biofilm

    Get PDF
    The extracellular matrix protects biofilm cells by reducing diffusion of antimicrobials. Tobramycin is an antibiotic used extensively to treat P. aeruginosa biofilms, but it is sequestered in the biofilm periphery by the extracellular negative charge matrix and loses its efficacy significantly. Dispersal of the biofilm extracellular matrix with enzymes such as DNase I is another promising therapy that enhances antibiotic diffusion into the biofilm. Here, we combine the charge neutralization of tobramycin provided by dextran-based single-chain polymer nanoparticles (SCPNs) together with DNase I to break the biofilm matrix. Our study demonstrates that the SCPNs improve the activity of tobramycin and DNase I by neutralizing the ionic interactions that keep this antibiotic in the biofilm periphery. Moreover, the detailed effects and interactions of nanoformulations with extracellular matrix components were revealed through time-lapse imaging of the P. aeruginosa biofilms by laser scanning confocal microscopy with specific labeling of the different biofilm components

    A new BiofilmChip device for testing biofilm formation and antibiotic susceptibility

    Get PDF
    Biofilms; Microbiologia clínica; Diagnòstic de malalties infecciosesBiofilms; Microbiología clínica; Diagnóstico de enfermedades infecciosasBiofilms; Clinical microbiology; Infectious-disease diagnosticsCurrently, three major circumstances threaten the management of bacterial infections: increasing antimicrobial resistance, expansion of chronic biofilm-associated infections, and lack of an appropriate approach to treat them. To date, the development of accelerated drug susceptibility testing of biofilms and of new antibiofouling systems has not been achieved despite the availability of different methodologies. There is a need for easy-to-use methods of testing the antibiotic susceptibility of bacteria that form biofilms and for screening new possible antibiofilm strategies. Herein, we present a microfluidic platform with an integrated interdigitated sensor (BiofilmChip). This new device allows an irreversible and homogeneous attachment of bacterial cells of clinical origin, even directly from clinical specimens, and the biofilms grown can be monitored by confocal microscopy or electrical impedance spectroscopy. The device proved to be suitable to study polymicrobial communities, as well as to measure the effect of antimicrobials on biofilms without introducing disturbances due to manipulation, thus better mimicking real-life clinical situations. Our results demonstrate that BiofilmChip is a straightforward tool for antimicrobial biofilm susceptibility testing that could be easily implemented in routine clinical laboratories.We thank Prof. Tim Tolker-Nielsen from Costerton Biofilm Center, University of Copenhagen, for providing the P. aeruginosa MK171 strain. This work was supported in part through grants to ET from the Ministerio de Ciencia, Innovación y Universidades (BIO2015-63557-R and RTI2018-098573-B-100) (MINECO/FEDER), the Generalitat de Catalunya (2017 SGR1079 and CERCA program), and the Spanish Cystic Fibrosis Foundation and La Caixa Foundation. The authors want to acknowledge MicroFabSpace and the Microscopy Characterization Facility, Unit 7 of ICTS “NANBIOSIS” from CIBER-BBN at IBEC. This research was supported by the Networking Biomedical Research Center (CIBER), Spain. CIBER is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and the Instituto de Salud Carlos III (RD16/0006/0012), with the support of the European Regional Development Fund. This work was funded by the CERCA Programme and by the Commission for Universities and Research of the Department of Innovation, Universities, and Enterprise of the Generalitat de Catalunya (2017 SGR 1079). This work was developed in the context of AdvanceCat and Base3D with the support of ACCIÓ (Catalonia Trade and Investment; Generalitat de Catalunya) under the Catalonian ERDF operational program (European Regional Development Fund) 2014–2020. This work was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through the projects MINDS (Proyectos I+D Excelencia + FEDER): TEC2015-70104-P, CTQ2016-75870-P

    Novel Oleanolic and Maslinic Acid Derivatives as a Promising Treatment against Bacterial Biofilm in Nosocomial Infections: An in Vitro and in Vivo Study

    Full text link
    Oleanolic acid (OA) and maslinic acid (MA) are pentacyclic triterpenic compounds that abound in industrial olive oil waste. These compounds have renowned antimicrobial properties and lack cytotoxicity in eukaryotic cells as well as resistance mechanisms in bacteria. Despite these advantages, their antimicrobial activity has only been tested in vitro, and derivatives improving this activity have not been reported. In this work, a set of 14 OA and MA C-28 amide derivatives have been synthesized. Two of these derivatives, MA-HDA and OA-HDA, increase the in vitro antimicrobial activity of the parent compounds while reducing their toxicity in most of the Gram-positive bacteria tested, including a methicillin-resistant Staphylococcus aureus-MRSA. MA-HDA also shows an enhanced in vivo efficacy in a Galleria mellonella invertebrate animal model of infection. A preliminary attempt to elucidate their mechanism of action revealed that these compounds are able to penetrate and damage the bacterial cell membrane. More significantly, their capacity to reduce antibiofilm formation in catheters has also been demonstrated in two sets of conditions: a static and a more challenged continuous-flow S. aureus biofilm

    Pentafluorosulfanyl-containing triclocarban analogs with potent antimicrobial activity

    Get PDF
    Concerns have been raised about the long-term accumulating effects of triclocarban, a polychlorinated diarylurea widely used as an antibacterial soap additive, in the environment and in human beings. Indeed, the Food and Drug Administration has recently banned it from personal care products. Herein, we report the synthesis, antibacterial activity and cytotoxicity of novel N,N'-diarylureas as triclocarban analogs, designed by reducing one or more chlorine atoms of the former and/or replacing them by the novel pentafluorosulfanyl group, a new bioisostere of the trifluoromethyl group, with growing importance in drug discovery. Interestingly, some of these pentafluorosulfanyl-bearing ureas exhibited high potency, broad spectrum of antimicrobial activity against Gram-positive bacterial pathogens, and high selectivity index, while displaying a lower spontaneous mutation frequency than triclocarban. Some lines of evidence suggest a bactericidal mode of action for this family of compounds

    Mycobacteria emulsified in olive oil-in-water trigger a robust immune response in bladder cancer treatment

    Get PDF
    The hydrophobic composition of mycobacterial cell walls leads to the formation of clumps when attempting to resuspend mycobacteria in aqueous solutions. Such aggregation may interfere in the mycobacteria-host cells interaction and, consequently, influence their antitumor effect. To improve the immunotherapeutic activity of Mycobacterium brumae, we designed different emulsions and demonstrated their efficacy. The best formulation was initially selected based on homogeneity and stability. Both olive oil (OO)- and mineral oil-in-water emulsions better preserved the mycobacteria viability and provided higher disaggregation rates compared to the others. But, among both emulsions, the OO emulsion increased the mycobacteria capacity to induce cytokines' production in bladder tumor cell cultures. The OO-mycobacteria emulsion properties: less hydrophobic, lower pH, more neutralized zeta potential, and increased affinity to fibronectin than non-emulsified mycobacteria, indicated favorable conditions for reaching the bladder epithelium in vivo. Finally, intravesical OO-M. brumae-treated mice showed a significantly higher systemic immune response, together with a trend toward increased tumor-bearing mouse survival rates compared to the rest of the treated mice. The physicochemical characteristics and the induction of a robust immune response in vitro and in vivo highlight the potential of the OO emulsion as a good delivery vehicle for the mycobacterial treatment of bladder cancer

    New Water-Soluble Copper(II) Complexes with Morpholine-Thiosemicarbazone Hybrids: Insights into the Anticancer and Antibacterial Mode of Action

    Full text link
    Six morpholine-(iso)thiosemicarbazone hybrids HL1-HL6 and their Cu(II) complexes with good-to-moderate solubility and stability in water were synthesized and characterized. Cu(II) complexes [Cu(L1-6)Cl] (1-6) formed weak dimeric associates in the solid state, which did not remain intact in solution as evidenced by ESI-MS. The lead proligands and Cu(II) complexes displayed higher antiproliferative activity in cancer cells than triapine. In addition, complexes 2-5 were found to specifically inhibit the growth of Gram-positive bacteria Staphylococcus aureus with MIC50 values at 2-5 μg/mL. Insights into the processes controlling intracellular accumulation and mechanism of action were investigated for 2 and 5, including the role of ribonucleotide reductase (RNR) inhibition, endoplasmic reticulum stress induction, and regulation of other cancer signaling pathways. Their ability to moderately inhibit R2 RNR protein in the presence of dithiothreitol is likely related to Fe chelating properties of the proligands liberated upon reduction

    Noves metodologies per al tractament de bacteris creixent en forma de biofilm

    Get PDF
    [cat] Les infeccions bacterianes han esdevingut un greu problema a escala mundial per culpa del mal ús que hom ha fet dels antibiòtics. L’adquisició de resistències als antimicrobians s’ha accelerat i cada cop hi ha més bacteris resistents a tots els antibiòtics coneguts. Aquest problema es veu agreujat quan els bacteris formen un biofilm i les infeccions es tornen cròniques. Els bacteris creixents en forma de biofilm produeixen una matriu extracel·lular protectora i adquireixen així un mecanisme extra de protecció vers els antibiòtics. A més, en l’actualitat no hi ha cap antibiòtic desenvolupat que sigui capaç d’actuar específicament contra els biofilms bacterians madurs i, per tant, es necessiten nous procediments i fàrmacs per a poder tractar-los. En aquest treball s’estudien noves metodologies per al tractament de bacteris creixent en forma de biofilm des de tres punts de vista diferents. En primer lloc, s’intenta buscar noves teràpies i, per això, s’analitza l’acció antimicrobiana i antibiofilm de noves molècules, que han sigut modificades químicament per a millorar el seu potencial contra els biofilms de Staphylococcus aureus. Una part d’aquestes molècules són derivades del triclocarban i unes altres són derivades de l’àcid oleanòlic i l’àcid maslínic. En ambdós casos s’han aconseguit molècules menys tòxiques i més actives que els compostos dels quals deriven, fins i tot contra la soca de S. aureus resistent a meticil·lina (MRSA). En segon lloc, es pretén desenvolupar una tecnologia que permeti determinar, de mantera senzilla i amb precisió, la sensibilitat antibiòtica dels biofilms, ja que els mètodes que es fan servir actualment es basen en el creixement microbià en forma planctònica i no són fiables en bacteris creixent en forma de biofilm. Seguint aquest fil, s’ha desenvolupat el dispositiu “BiofilmChip”, una estructura microfluídica que permet el creixement de biofilms de manera senzilla i l’anàlisi de la seva sensibilitat sense la necessitat d’usar un microscopi confocal. En tercer i últim lloc, es volen desenvolupar noves tecnologies per al tractament de biofilms utilitzant enzims disgregadors del biofilm i fent servir mètodes alternatius d’alliberament de fàrmacs (drug delivery), com són les nanopartícules. Així, s’ha treballat amb els enzims alginat liasa i desoxiribonucleasa I (DNasa I), que degraden components de la matriu extracel·lular dels biofilms i en trenquen l’estructura, fent possible que els antibiòtics travessin aquesta barrera i puguin actuar. Per una banda, s’ha analitzat l’especificitat, l’activitat disgregadora i la sinergia amb antibiòtics de cinc alginat liases contra els biofilms de Pseudomonas aeruginosa. Per altra banda, s’ha treballat amb unes nanopartícules que milloren l’activitat de l’antibiòtic tobramicina, ja que contenen l’enzim DNasa I que permet la penetració d’aquest antibiòtic en els biofilms de S. aureus i P. aeruginosa. Aquestes nanopartícules, a més, estan marcades amb un fluoròfor, la qual cosa ha permès visualitzar la seva interacció amb la matriu extracel·lular del biofilm

    Aerobic Vitamin B12 Biosynthesis Is Essential for Pseudomonas aeruginosa Class II Ribonucleotide Reductase Activity During Planktonic and Biofilm Growth

    No full text
    Pseudomonas aeruginosa is a major pathogenic bacterium in chronic infections and is a model organism for studying biofilms. P. aeruginosa is considered an aerobic bacterium, but in the presence of nitrate, it also grows in anaerobic conditions. Oxygen diffusion through the biofilm generates metabolic and genetic diversity in P. aeruginosa growth, such as in ribonucleotide reductase activity. These essential enzymes are necessary for DNA synthesis and repair. Oxygen availability determines the activity of the three-ribonucleotide reductase (RNR) classes. Class II and III RNRs are active in the absence of oxygen; however, class II RNRs, which are important in P. aeruginosa biofilm growth, require a vitamin B12 cofactor for their enzymatic activity. In this work, we elucidated the conditions in which class II RNRs are active due to vitamin B12 concentration constraints (biosynthesis or environmental availability). We demonstrated that increased vitamin B12 levels during aerobic, stationary and biofilm growth activate class II RNR activity. We also established that the cobN gene is essentially responsible for B12 biosynthesis under planktonic and biofilm growth. Our results unravel the mechanisms of dNTP synthesis by P. aeruginosa during biofilm growth, which appear to depend on the bacterial strain (laboratory-type or clinical isolate)

    3D spatial organization and improved antibiotic treatment of a Pseudomonas aeruginosaStaphylococcus aureus wound biofilm by nanoparticle enzyme delivery

    Full text link
    Chronic wounds infected by Pseudomonas aeruginosa and Staphylococcus aureus are a relevant health problem worldwide because these pathogens grow embedded in a network of polysaccharides, proteins, lipids, and extracellular DNA, named biofilm, that hinders the transport of antibiotics and increases their antimicrobial tolerance. It is necessary to investigate therapies that improve the penetrability and efficacy of antibiotics. In this context, our main objectives were to study the relationship between P. aeruginosa and S. aureus and how their relationship can affect the antimicrobial treatment and investigate whether functionalized silver nanoparticles can improve the antibiotic therapy. We used an optimized in vitro wound model that mimics an in vivo wound to co-culture P. aeruginosa and S. aureus biofilm. The in vitro wound biofilm was treated with antimicrobial combinatory therapies composed of antibiotics (gentamycin and ciprofloxacin) and biofilm-dispersing free or silver nanoparticles functionalized with enzymes (α-amylase, cellulase, DNase I, or proteinase K) to study their antibiofilm efficacy. The interaction and colocalization of P. aeruginosa and S. aureus in a wound-like biofilm were examined and detailed characterized by confocal and electronic microscopy. We demonstrated that antibiotic monotherapy is inefficient as it differentially affects the two bacterial species in the mixed biofilm, driving P. aeruginosa to overcome S. aureus when using ciprofloxacin and the contrary when using gentamicin. In contrast, dual-antibiotic therapy efficiently reduces both species while maintaining a balanced population. In addition, DNase I nanoparticle treatment had a potent antibiofilm effect, decreasing P. aeruginosa and S. aureus viability to 0.017 and 7.7%, respectively, in combined antibiotics. The results showed that using nanoparticles functionalized with DNase I enhanced the antimicrobial treatment, decreasing the bacterial viability more than using the antibiotics alone. The enzymes α-amylase and cellulase showed some antibiofilm effect but were less effective compared to the DNase I treatment. Proteinase K showed insignificant antibiofilm effect. Finally, we proposed a three-dimensional colocalization model consisting of S. aureus aggregates within the biofilm structure, which could be associated with the low efficacy of antibiofilm treatments on bacteria. Thus, designing a clinical treatment that combines antibiofilm enzymes and antibiotics may be essential to eliminating chronic wound infections
    corecore