3,325 research outputs found

    Evaluation of vineyard growth under four irrigation regimes using vegetation and soil on-the-go sensors

    Get PDF
    Precision agriculture is a useful tool to assess plant growth and development in vineyards. The present study focused on spatial and temporal analysis of vegetation growth variability, in four irrigation treatments with four replicates. The research was carried out in a vineyard located in the southwest of Spain during the 2012 and 2013 growing seasons. Two multispectral sensors mounted on an all-terrain vehicle (ATV) were used in the different growing seasons/stages in order to calculate the vineyard normalized difference vegetation index (NDVI). Soil apparent electrical conductivity (ECa) was also measured up to 0.8m soil depth using an on-the-go geophysical sensor. All measured data were analysed by means of principal component analysis (PCA). The spatial and temporal NDVI and ECa variations showed relevant differences between irrigation treatments and climatological conditions

    The Role of Inflammatory Diet and Vitamin D on the Link between Periodontitis and Cognitive Function: A Mediation Analysis in Older Adults

    Get PDF
    Patients suffering from periodontitis are at a higher risk of developing cognitive dysfunction. However, the mediation effect of an inflammatory diet and serum vitamin D levels in this link is unclear. In total, 2062 participants aged 60 years or older with complete periodontal diagnosis and cognitive tests from the National Health and Nutrition Examination Survey (NHANES) 2011–2012 and 2013–2014 were enrolled. The Consortium to Establish a Registry for Alzheimer’s disease (CERAD) word learning subtest (WLT) and CERAD delayed recall test (DRT), the animal fluency test (AFT) and the digit symbol substitution test (DSST) was used. Dietary inflammatory index (DII) was computed via nutrition datasets. Mediation analysis tested the effects of DII and vitamin D levels in the association of mean probing depth (PD) and attachment loss (AL) in all four cognitive tests. Periodontitis patients obtained worse cognitive test scores than periodontally healthy individuals. DII was negatively associated with CERAD-WLT, CERAD-DRT, AFT and DSST, and was estimated to mediate between 9.2% and 36.4% of the total association between periodontitis with cognitive dysfunction (p < 0.05). Vitamin D showed a weak association between CERAD-DRT, AFT and DSST and was estimated to between 8.1% and 73.2% of the association between periodontitis and cognitive dysfunction (p < 0.05). The association between periodontitis and impaired cognitive function seems to be mediated both by a proinflammatory dietary load and vitamin D deficiency. Future studies should further explore these mediators in the periodontitis-cognitive decline link

    Potential Benefits of Non-Pharmacological Therapies in Fibromyalgia

    Get PDF
    Fibromyalgia (FM) is an incurable common syndrome of non-articular origin, and with no effective treatment by now. A great deal of research has sought to assess the efficacy of different therapies, especially non-pharmacological and low-cost ones, in the reduction of the intensity of symptoms. Despite the availability of a wide range of alternative therapies nowadays, there is little scientific evidence of the potential benefits of most of them, with results being contradictories. The purpose of this paper is to review some of the less well known alternative therapies in FM treatment, to describe the more relevant clinical studies published in this matter, and to analyze the potential effects of the main alternative therapies, in order to verify their efficacy

    Acquisition of functions on the outer capsid surface during evolution of double-stranded RNA fungal viruses

    Get PDF
    Unlike their counterparts in bacterial and higher eukaryotic hosts, most fungal viruses are transmitted intracellularly and lack an extracellular phase. Here we determined the cryo-EM structure at 3.7 Å resolution of Rosellinia necatrix quadrivirus 1 (RnQV1), a fungal double-stranded (ds)RNA virus. RnQV1, the type species of the family Quadriviridae, has a multipartite genome consisting of four monocistronic segments. Whereas most dsRNA virus capsids are based on dimers of a single protein, the ~450-Å-diameter, T = 1 RnQV1 capsid is built of P2 and P4 protein heterodimers, each with more than 1000 residues. Despite a lack of sequence similarity between the two proteins, they have a similar α-helical domain, the structural signature shared with the lineage of the dsRNA bluetongue virus-like viruses. Domain insertions in P2 and P4 preferential sites provide additional functions at the capsid outer surface, probably related to enzyme activity. The P2 insertion has a fold similar to that of gelsolin and profilin, two actin-binding proteins with a function in cytoskeleton metabolism, whereas the P4 insertion suggests protease activity involved in cleavage of the P2 383-residue C-terminal region, absent in the mature viral particle. Our results indicate that the intimate virus-fungus partnership has altered the capsid genome-protective and/or receptor-binding functions. Fungal virus evolution has tended to allocate enzyme activities to the virus capsid outer surface

    Reaction pathways and textural aspects of the replacement of anhydrite by calcite at 25 °C

    Get PDF
    The replacement of sulfate minerals by calcium carbonate polymorphs (carbonation) has important implications in various geological processes occurring in Earth surface environments. In this paper we report the results of an experimental study of the interaction between anhydrite (100), (010), and (001) surfaces and Na₂CO₃ aqueous solutions under ambient conditions. Carbonation progress was monitored by glancing incidence X-ray diffraction (GIXRD) and scanning electron microscopy (SEM). We show that the reaction progresses through the dissolution of anhydrite and the simultaneous growth of calcite. The growth of calcite occurs oriented on the three anhydrite cleavage surfaces and its formation is accompanied by minor vaterite. The progress of the carbonation always occurs from the outer-ward to the inner-ward surfaces and its rate depends on the anhydrite surface considered, with the (001) surface being much more reactive than the (010) and (100) surfaces. The thickness of the formed carbonate layer grows linearly with time. The original external shape of the anhydrite crystals and their surface details (e.g., cleavage steps) are preserved during the carbonation reaction. Textural characteristics of the transformed regions, such as the gradation in the size of calcite crystals, from ~2 ÎŒm in the outer region to ~17 ÎŒm at the calcite-anhydrite interface, the local preservation of calcite crystalographic orientation with respect to anhydrite and the distribution of the microporosity mainly within the carbonate layer without development of any significant gap at the calcite-anhydrite interface. Finally, we compare these results on anhydrite carbonation with those on gypsum carbonation and can explain the differences on the basis of four parameters: (1) the molar volume change involved in the replacement process in each case, (2) the lack/existence of epitactic growth between parent and product phases, (3) the kinetics of dissolution of the different surfaces, and (4) the chemical composition (amount of structural water) of the parent phases

    Periodontitis and Systemic Markers of Neurodegeneration. A case-control study

    Get PDF
    Aim: To investigate whether periodontitis is associated with amyloid beta (AÎČ) peptides and whether systemic inflammation could act as a potential mediator of this link. Materials and Methods: A case–control study was designed including 75 patients with periodontitis (cases) and 75 age‐balanced and gender‐matched participants without periodontitis (controls). Full‐mouth periodontal evaluation was performed in all participants. Demographic, clinical and behaviour data were also recorded. Fasting blood samples were collected, and serum levels of interleukin 6 (IL‐6), high‐sensitivity C‐reactive protein (hs‐CRP), AÎČ1‐40 and AÎČ1‐42 were determined. Results: Cases showed higher levels of IL‐6 (8.7 ± 3.2 vs. 4.8 ± 0.5 pg/ml), hs‐CRP (3.3 ± 1.2 vs. 0.9 ± 0.7 mg/L), AÎČ1‐40 (37.3 ± 6.0 vs. 30.3 ± 1.8 pg/ml) and AÎČ1‐42 (54.5 ± 10.6 vs. 36.5 ± 10.0 pg/ml) when compared to controls (all p < .001). Diagnosis of periodontitis was statistically significantly associated with circulating AÎČ1‐40 (urn:x-wiley:03036979:media:jcpe13267:jcpe13267-math-0001 = 6.9, 95% CI: 5.4–8.3; p < .001) and AÎČ1‐42 (urn:x-wiley:03036979:media:jcpe13267:jcpe13267-math-0002 = 17.8, 95% CI: 14.4–21.3; p < .001). Mediation analysis confirmed hs‐CRP and IL‐6 as mediators of this association. Conclusions: Periodontitis is associated with increased peripheral levels of AÎČ. This finding could be explained by enhanced systemic inflammation that can be seen in patients with periodontitis

    Alkylphenols and polycyclic aromatic hydrocarbons in eastern Mediterranean Spanish coastal marine bivalves

    Full text link
    This paper reports the first results on alkylphenol pollution in edible bivalves from the Spanish coast. Two sampling campaigns (July 2006 and July 2007) were carried out to determine the concentration of nonylphenol (NP), octylphenol (OP), and eight polycyclic aromatic hydrocarbons (PAHs) in wild mussels (Mytilus galloprovincialys) and clams (Donax trunculus) at 14 sampling sites along the eastern Mediterranean Spanish coast. The results show that NP is the predominant alkylphenol, being the port of Valencia the most polluted area (up to 147 mu g/kg wet weight in clams). Moving away from the ports the concentration of NP in bivalves decreased. OP concentration was below its detection limit in most of the studied areas and its maximum concentration (6 mu g/kg w/w) was measured in clams from the port of Sagunto. The presence of low levels of PAHs was observed in most of the studied areas. The total PAHs concentration (i.e., sum of the eight measured PAHs) achieved a maximum value of 10.09 mu g/kg w/w in the north coast of Valencia city. The distribution pattern of the individual PAHs showed that both pollution sources petrogenic and pyrolytic were present in the sampled areas. Fluoranthene was the most abundant PAH in mussels while benzo(b)fluoranthene in clams. The maximum concentration of 10 mu g/kg w/w for benzo(a)pyrene established by the European Commission was never reached, indeed sampled bivalves showed concentrations 10 times lower than this reference value. Thus, they can be considered safe for human consumption. Despite the low contamination levels, the results show an overall pollution of bivalves by alkylphenol and PAHs as well as an increment in the number of polluted areas from 2006 to 2007. Thus, periodical sampling campaigns should be carried out to monitor the long-term tendency of these toxic and persistent pollutants. © 2010 Springer Science+Business Media B.V.Financial support from Conselleria de Medio Ambiente, Agua, Urbanismo y Vivienda de la Generalitat Valenciana (Application of Water Framework Directive 2000/60/EC on endocrine disruptors and priority substances in coastal areas in the Comunidad Valenciana) is gratefully acknowledged.Bouzas Blanco, A.; Aguado GarcĂ­a, D.; MartĂ­ Ortega, N.; Pastor, J.; Herraez, R.; Campins, P.; Seco Torrecillas, A. (2011). Alkylphenols and polycyclic aromatic hydrocarbons in eastern Mediterranean Spanish coastal marine bivalves. Environmental Monitoring and Assessment. 176(1-4):169-181. doi:10.1007/s10661-010-1574-5S1691811761-4Antizar-Ladislao, B. (2009). Polycyclic aromatic hydrocarbons, polycholirnated biphenyls, phthalates and organotins in northern Atlantic Spain’s coastal marine sediments. Journal of Environmental Monitoring, 11, 85–91.Asikainen, A. H., Kuusisto, M. P., Hiltunen, M. A., & Ruuskanen, J. (2002). Occurrence and destruction of PAHs, PCBs, ClPhs, ClBzs, and PCDD/Fs in ash from gasification of straw. Environmental Science and Technology, 36, 2193–2197.Barreira, L. A., Mudge, S. M., & Bebianno, M. J. (2007). Polycyclic aromatic hydrocarbons in clams Ruditapes decussatus (Linnaeus, 1758). Journal of Environmental Monitoring, 9, 187–198.Baumard, P., Budzinski, H., & Garrigues, P. (1998). PAHs in Arcachon Bay, France: Origin and biomonitoring of caged organisms. Marine Pollution Bulletin, 36, 577–586.Baumard, P., Budzinski, H., Garrigues, P., Narbonne, J. F., Burgeot, T., Miche, X., et al. (1999). Polycyclic aromatic hydrocarbon (PAH) burden of mussels (Mytilus sp.) in different marine environments in relation with sediment PAH contamination, and bioavailability. Marine Environmental Research, 47, 415–439.Binelli, A., & Provini, A. (2003). POPs in edible clams from different Italian and European markets and possible human health risk. Marine Pollution Bulletin, 46, 879–886.Boscolo, R., Cacciatore, F., & Giovanardi, O. (2007). Polycyclic aromatic hydrocarbons (PAHs) in transplanted Manila clams (Tapes philippinarum) from the Lagoon of Venice as assessed by PAHs/shell weight index: A preliminary study. Marine Pollution Bulletin, 55, 485–493.CampĂ­ns, P., VerdĂș, J., Sevillano, A., Molins, C., & HerrĂĄez, R. (2008). New micromethod combining miniaturized matrix solid-phase dispersion and in-tube in-valve solid-phase microextraction for estimating polycyclic aromatic hydrocarbons in bivalves. Journal of Chromatography A, 1211, 13–21.David, A., Fenet, H., & Gomez, E. (2009). Alkylphenols in marine environments: Distribution monitoring strategies and detection considerations. Marine Pollution Bulletin. doi: 10.1016/j.marpolbul.2009.04.021 .EC (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities, L, 327, 1.EC (2005). Commission regulation (EC) No 2008/2005 of 4 February 2005 amending Regulation (EC) No 466/2001 as regards polycyclic aromatic hydrocarbons. Official Journal of the European Communities, L, 34, 3.Ferrara, F., Fabietti, F., Delise, M., Piccioli-Bocca, A., & Funari, E. (2001). Alkylphenolic compounds in edible mollusc of the Adriatic Sea (Italy). Environmental Science and Technology, 35, 3109–3112.Francioni, E., A. de L. R., Wagener, Scofield, A. L., Depledge, M. H., & Cavalier, B. (2007). Evaluation of the mussel Perna perna as a biomonitor of polycyclic aromatic hydrocarbon (PAH) exposure and effects. Marine Pollution Bulletin, 54, 329–338.Gilroy, D. J. (2000). Derivation of shellfish harvest reopening criteria following the new Carissa oil spill in Coos Bay, Oregon. Journal of Toxicology and Environmental Health, 60, 317–329.Goldberg, E. D., & Bertine, K. K. (2000). Beyond the mussel watch—New directions for monitoring marine. Science of the Total Environment, 247, 165–174.Grandby, K., & Spliid, N. H. (1995). Hydrocarbon and organochlorines in common mussels from the Kattegat and the Belts and their relation to condition indices. Marine Pollution Bulletin, 30, 74–82.Isobe, T., Nishiyama, H., Nakashima, A., & Takada, H. (2001). Distribution and behavior of nonylphenol, octylphenol, and nonylphenol monoethoxylate in Tokyo metropolitan area: Their association with aquatic particles and sedimentary distributions. Environmental Science and Technology, 35, 1041–1049.Isobe, T., Takada, H., Kanai, M., Tsutsumi, S., Isobe, K. O., Boonyatumanond, R., et al. (2007). Distribution of polycyclic aromatic hydrocarbons (PAHs) and phenolic endocrine disrupting chemicals in South and Southeast Asian mussels. Environmental Monitoring Assessment, 135, 423–440.Jackson, J. E. (2003). A user’s guide to principal components. NJ: Wiley.Khairy, M. A., Kolb, M., Mostafa, A. R., EL-Fiky, A., & Bahadir, M. (2009). Risk assessment of polycyclic aromatic hydrocarbons in a Mediterranean semienclosed basin affected by human activities (Abu Qui Bay, Egypt). Journal of Hazardous Material. doi: 10.1016/j.jhazmat.2009.04.084 .Koh, C. H., Khim, J. S., Kannan, K., Villeneuve, D. L., Senthil Kumar, K., & Giesy, J. P. (2004). Polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) and 2,3,7,8-TCDD equivalents (TEQs) in sediment from the Hyeongsan River, Korea. Environmental Pollution, 132, 489–501.Law, R. J., Kelly, C. A., Baker, K. L., Langford, K. H., & Bartlett, T. (2002). Polycyclic aromatic hydrocarbons in sediments, mussels and crustacea around a former gasworks site in Shoreham-by-Sea, UK. Marine Pollution Bulletin, 44, 903–911.Li, D., Dong, M., Shim, W. J., Yim, U. H., Hong, S., & Kannan, N. (2008). Distribution characteristics of nonylphenolic chemicals in Masan Bay environments. Korea. Chemosphere, 71, 1162–1172.Massara Paletto, V., Commendatore, M. G., & Esteves, J. L. (2008). Hydrocarbon levels in sediments and bivalve mollusks from BahĂ­a Nueva (Patagonia, Argentina): An assessment of probable origin and bioaccumulation factors. Baseline/Marine Pollution Bulletin, 56, 2082–2105.Navarro, A., Endo, S., Gocht, T., Barth, J. A. C., Lacorte, S., BarcelĂł, D., et al. (2009). Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments. Environmental Pollution, 157, 698–703.Nesto, N., Romano, S., Moschino, V., Mauri, M., & Da Ros, L. (2007). Bioaccumulation and biomarker responses of trace metals and micro-organic pollutants in mussels and fish from the Lagoon of Venice, Italy. Marine Pollution Bulletin, 55, 469–484.OSPAR Commision (2000). Quality Status Report 2000. London: OSPAR.Palma-Fleming, H., Asencio, A. J., & Gutierrez, E. (2004). Polycyclic aromatic hydrocarbons in sediments and mussels of Corral Bay, south central Chile. Journal of Environmental Monitoring, 6, 229–233.Senthil Kumar, K., Sajwan, K. S., Richardson, J. P., & Kannan, K. (2008). Contamination profiles of heavy metals, organochlorine pesticides, polycyclic aromatic hydrocarbons and alkylphenols in sediment and oyster collected from marsh/estuarine Savannah GA, USA. Marine Pollution Bulletin, 56, 136–162.SolĂ©, M., Porte, C., BarcelĂł, D., & AlbigĂ©s (2000). Bivalves residue analysis for the assessment of coastal pollution in the Ebro Delta (NW Mediterranean). Marine Pollution Bulletin, 40(9), 746–753.Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., & Lester, J. N. (2008). Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environmental International, 34, 1033–1049.Soriano, J. A., Viñas, L., Franco, M. A., GonzĂĄlez, J. J., Ortiz, L., Bayona, J. M., et al. (2006). Spatial and temporal trends of petroleum hydrocarbons in wild mussels from the Galician coast (NW Spain) affected by the Prestige oil spill. Science of the Total Environment, 370, 80–90.White, K. L. (1986). An overview of immunotoxicology and carcinogenic polycyclic aromatic hydrocarbons. Journal of Environmental Science and Health. Part C: Environmental Carcinogenesis & Ecotoxicology Reviews, 2, 163–202
    • 

    corecore