16,937 research outputs found

    Energy harvesting from vehicular traffic over speed bumps: A review

    Get PDF
    Energy used by vehicles to slow down in areas of limited speed is wasted. A traffic energy-harvesting device (TEHD) is capable of harvesting vehicle energy when passing over a speed bump. This paper presents a classification of the different technologies used in the existing TEHDs. Moreover, an estimation of the energy that could be harvested with the different technologies and their cost has been elaborated. The energy recovered with these devices could be used for marking and lighting of roads in urban areas, making transportation infrastructures more sustainable and environmentally friendly

    Surface stress of Ni adlayers on W(110): the critical role of the surface atomic structure

    Full text link
    Puzzling trends in surface stress were reported experimentally for Ni/W(110) as a function of Ni coverage. In order to explain this behavior, we have performed a density-functional-theory study of the surface stress and atomic structure of the pseudomorphic and of several different possible 1x7 configurations for this system. For the 1x7 phase, we predict a different, more regular atomic structure than previously proposed based on surface x-ray diffraction. At the same time, we reproduce the unexpected experimental change of surface stress between the pseudomorphic and 1x7 configuration along the crystallographic surface direction which does not undergo density changes. We show that the observed behavior in the surface stress is dominated by the effect of a change in Ni adsorption/coordination sites on the W(110) surface.Comment: 14 pages, 3 figures Published in J. Phys.: Condens. Matter 24 (2012) 13500

    Oscillation damping of chiral string loops

    Full text link
    Chiral cosmic string loop tends to the stationary (vorton) configuration due to the energy loss into the gravitational and electromagnetic radiation. We describe the asymptotic behaviour of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations.Comment: 10 pages, 2 figures. Accepted for publication in Physical Review

    Volume modulus inflation and a low scale of SUSY breaking

    Full text link
    The relation between the Hubble constant and the scale of supersymmetry breaking is investigated in models of inflation dominated by a string modulus. Usually in this kind of models the gravitino mass is of the same order of magnitude as the Hubble constant which is not desirable from the phenomenological point of view. It is shown that slow-roll saddle point inflation may be compatible with a low scale of supersymmetry breaking only if some corrections to the lowest order Kahler potential are taken into account. However, choosing an appropriate Kahler potential is not enough. There are also conditions for the superpotential, and e.g. the popular racetrack superpotential turns out to be not suitable. A model is proposed in which slow-roll inflation and a light gravitino are compatible. It is based on a superpotential with a triple gaugino condensation and the Kahler potential with the leading string corrections. The problem of fine tuning and experimental constraints are discussed for that model.Comment: 28 pages, 8 figures, comments and references added, minor change in notation, version to be publishe

    Charged and superconducting vortices in dense quark matter

    Full text link
    Quark matter at astrophysical densities may contain stable vortices due to the spontaneous breaking of hypercharge symmetry by kaon condensation. We argue that these vortices could be both charged and electrically superconducting. Current carrying loops (vortons) could be long lived and play a role in the magnetic and transport properties of this matter. We provide a scenario for vorton formation in protoneutron stars.Comment: Replaced with the published version. A typographical error in Eq. 2 is correcte

    Volume modulus inflection point inflation and the gravitino mass problem

    Full text link
    Several models of inflection point inflation with the volume modulus as the inflaton are investigated. Non-perturbative superpotentials containing two gaugino condensation terms or one such term with threshold corrections are considered. It is shown that the gravitino mass may be much smaller than the Hubble scale during inflation if at least one of the non-perturbative terms has a positive exponent. Higher order corrections to the Kahler potential have to be taken into account in such models. Those corrections are used to stabilize the potential in the axion direction in the vicinity of the inflection point. Models with only negative exponents require uplifting and in consequence have the supersymmetry breaking scale higher than the inflation scale. Fine-tuning of parameters and initial conditions is analyzed in some detail for both types of models. It is found that fine-tuning of parameters in models with heavy gravitino is much stronger than in models with light gravitino. It is shown that recently proposed time dependent potentials can provide a solution to the problem of the initial conditions only in models with heavy gravitino. Such potentials can not be used to relax fine tuning of parameters in any model because this would lead to values of the spectral index well outside the experimental bounds.Comment: 27 pages, 9 figures, comments and references added, version to be publishe

    High Energy Cosmic Rays from Neutrinos

    Get PDF
    We discuss recent models in which neutrinos, which are assumed to have mass in the eV range, originate the highest energy cosmic rays by interaction with the enhanced density in the galactic halo of the relic cosmic neutrino background. We make an analytical calculation of the required neutrino fluxes to show that the parameter space for these models is constrained by horizontal air shower searches and by the total number of background neutrinos, so that only models which have fairly unnatural halo sizes and enhanced densities are allowed.Comment: 14 pages, 3 ps figures. To appear in Phys. Rev.

    Fuzzy inference system for the identification of over-the-counter (otc) drugs.

    Get PDF
    This document shows the details of the implementation of a fuzzy inference system, for the identification of four over-the-counter drugs (Naproxen, Calcium Carbonate, Muvett and Winadol), by using a Raman Spectroscopy, which output is the characterization of the substance. Data obtained from Raman Spectroscopy are modeled with Matlab®- Fuzzy Logic Toolbox

    On supersymmetric Minkowski vacua in IIB orientifolds

    Full text link
    Supersymmetric Minkowski vacua in IIB orientifold compactifications based on orbifolds with background fluxes and non-perturbative superpotentials are investigated. Especially, microscopic requirements and difficulties to obtain such vacua are discussed. We show that orbifold models with one and two complex structure moduli and supersymmetric 2-form flux can be successfully stabilized to such vacua. By taking additional gaugino condensation on fixed space-time filling D3-branes into account also models without complex structure can be consistently stabilized to Minkowski vacua.Comment: 17 pages, 2 figures; More detailed proof for absence of complex flat directions in susy AdS vacua given; Footnotes and reference adde
    corecore