204 research outputs found

    Influence of shallowness, bank inclination and bank roughness on the variability of flow patterns and boundary shear stress due to secondary currents in straight openchannels

    Get PDF
    Boundary shear stress and flow variability due to its interaction with main flow and secondary currents were investigated under conditions that extend previous research on trapezoidal channels. Secondary currents that scale with the flow depth were found over the entire width in all experiments. These findings contradict the widespread perception that secondary currents die out at a distance of 2.5 times the flow depth from the bank, a perception which is largely based on experiments with smooth boundaries. The reported results indicate that a stable pattern of secondary currents over the entire channel width can only be sustained over a fixed horizontal bed if the bed's roughness is sufficient to provide the required transverse oscillations in the turbulent shear stresses. Contrary to laboratory flumes, alluvial river bed always provide sufficient roughness. The required external forcing of this hydrodynamic instability mechanism is provided by the turbulence-generated near-bank secondary currents. The pattern of near-bank secondary currents depends on the inclination and the roughness of the bank. In all configurations, secondary currents result in a reduction of the bed shear stress in the vicinity of the bank and a heterogeneous bank shear stress that reaches a maximum close to the toe of the bank. Moreover, these currents cause transverse variability of 10–15% for the streamwise velocities and 0.2u* 2–0.3u* 2 for the bed shear stress. These variations are insufficient to provide the flow variability required in river restoration projects, but nevertheless must be accounted for in the design of stable channels

    Flow processes near smooth and rough (concave) outer banks in curved open channels

    Get PDF
    Flow processes near the (concave) outer bank in curved river reaches are investigated in a laboratory flume, with focus on the influence of the bank roughness. An outer-bank cell of reversed secondary flow occurs for all the investigated roughness configurations of the outer bank. The cell widens the outer-bank boundary layer, which reduces the flow forcing on the bank, but also advects high-momentum fluid toward the lower part of the bank, which enhances the flow forcing on the bank. Increasing the roughness of the outer bank causes a considerable widening and strengthening of the outer-bank cell, which amplifies both effects on the flow forcing. The widening of the outer-bank boundary layer induced by the outer-bank cell reduces the effective width of the channel, i.e., the width where most of the discharge is conveyed, which increases significantly the sediment transport capacity in the central part of the channel. The near-bank processes are qualitatively similar but show considerable quantitative variations around the bend. The outer-bank cell reaches its maximum strength in the zone that is most vulnerable to bed scour and bank erosion, which corroborates its morphological relevance. The outer cell is mainly generated by reversed near-surface gradients in the profile of the streamwise velocity. The anisotropy of the cross-stream turbulence is the major mechanism opposed to the outer-bank cell. Increasing roughness of the outer bank amplifies all dominant mechanisms but does not modify their relative importance. The relevance of the experimental results for natural curved river configurations is discussed

    Deleterious mutation accumulation and the long-term fate of chromosomal inversions

    Get PDF
    Chromosomal inversions contribute widely to adaptation and speciation, yet they present a unique evolutionary puzzle as both their allelic content and frequency evolve in a feedback loop. In this simulation study, we quantified the role of the allelic content in determining the long-term fate of the inversion. Recessive deleterious mutations accumulated on both arrangements with most of them being private to a given arrangement. This led to increasing overdominance, allowing for the maintenance of the inversion polymorphism and generating strong non-adaptive divergence between arrangements. The accumulation of mutations was mitigated by gene conversion but nevertheless led to the fitness decline of at least one homokaryotype under all considered conditions. Surprisingly, this fitness degradation could be permanently halted by the branching of an arrangement into multiple highly divergent haplotypes. Our results highlight the dynamic features of inversions by showing how the non-adaptive evolution of allelic content can play a major role in the fate of the inversion

    Flow and sediment dynamics in channel confluences

    Get PDF
    Confluences with relatively low discharge and momentum flux ratios where a small steep tributary with a high supply of poorly sorted sediment joins a large, low-gradient main channel commonly occur in nature, but they have not yet been investigated. Measurements of the three-dimensional velocity field, turbulence, sediment transport, bed material grain size and morphology are reported in a laboratory setting that is representative of confluences on the Upper Rhone River, Switzerland. The difference between the low-flow depth in the steep tributary and the higher flow depth in the main channel creates a marked bed discordance in the tributary zone. Due to this bed discordance, the tributary flow penetrates into the main channel mainly in the upper part of the water column, whereas the main-channel flow is hardly hindered by the tributary in the lower part of the water column, giving rise to a two-layer flow structure in the confluence zone. In confluences with high supply of coarse sediment from the tributary, the development of a deposition bar downstream from the confluence reduces the flow area and causes flow acceleration that contributes to an increase in sediment transport capacity. The sediment supplied by the tributary is mainly sorted and transported on the face of the bar by the near-bed flow originating from the main channel. The sediment transport capacity is further increased by the three-dimensionality of the flow, which is characterized by maximum velocities occurring near the bed, and by a considerable increase in turbulent kinetic energy generated in the shear layer at the interface of the flows originating from the main channel and the tributary. A conceptual model is proposed for the hydro-morpho-sedimentary processes, and compared to existing conceptual models for confluences with different characteristics

    Hydromorphological implications of local tributary widening for river rehabilitation

    Get PDF
    The hydromorphological implications of the local widening of a tributary where it enters a confluence were investigated in a laboratory setting that is representative of the 20 major confluences on the channelized Upper Rhone River. Although local tributary widening reduces the confluence angle, it amplifies the hydromorphosedimentary processes in the confluence hydrodynamic zone (CHZ), because local widening reduces the effective flow area, causing increased tributary velocities and momentum flux. The reduction in effective flow area is caused by an increase in bed elevation and by lateral constriction of the flow induced by flow stagnation at the upstream corner of the confluence. The increased tributary velocities amplify the two-layer flow structure in the CHZ. Flow originating from the tributary is confined to the upper part of the water column and is more markedly directed outward than flow in the lower part of the water column originating from the main channel. A shear layer characterized by increased turbulence activity develops at the interface between the two flow layers. The increased tributary velocities enhance bed discordance, the penetration of the tributary into the CHZ and the channel bed gradients in the postconfluence channel. The results indicate that local tributary widening can enhance heterogeneity in sediment substrate, flow velocities and flow depths. Widening may therefore enhance local habitat and improve the connectivity of the tributary to the main river network. This may, in turn, provide favorable conditions for the improvement and reestablishment of ecological river functions, without having adverse impact on flood safety

    Mutation accumulation opposes polymorphism : supergenes and the curious case of balanced lethals

    Get PDF
    Supergenes offer spectacular examples of long-term balancing selection in nature, but their origin and maintenance remain a mystery. Reduced recombination between arrangements, a critical aspect of many supergenes, protects adaptive multi-trait phenotypes but can lead to mutation accumulation. Mutation accumulation can stabilize the system through the emergence of associative overdominance (AOD), destabilize the system, or lead to new evolutionary outcomes. One outcome is the formation of maladaptive balanced lethal systems, where only heterozygotes remain viable and reproduce. We investigated the conditions under which these different outcomes occur, assuming a scenario of introgression after divergence. We found that AOD aided the invasion of a new supergene arrangement and the establishment of a polymorphism. However, this polymorphism was easily destabilized by further mutation accumulation, which was often asymmetric, disrupting the quasi-equilibrium state. Mechanisms that accelerated degeneration tended to amplify asymmetric mutation accumulation between the supergene arrangements and vice-versa. As the evolution of balanced lethal systems requires symmetric degeneration of both arrangements, this leaves only restricted conditions for their evolution, namely small population sizes and low rates of gene conversion. The dichotomy between the persistence of polymorphism and degeneration of supergene arrangements likely underlies the rarity of balanced lethal systems in nature

    Multicentre evaluation of the Boehringer Mannheim / Hitachi 911 Analysis System

    Get PDF
    The analytical performance and practicability of the Boehringer Mannheim (BM)/mtaci 91 analysis system have been assessed in a multicentre evaluation, which involved six laboratories from European countries. Analytes commonly used in classical clinical chemistry were tested in a core programme, which mainlyfollowed lhe ECCLS guidelines. In addition, a satellite programme covered other analytes, such as proteins, drugs and urine analytes. In total, the study comprised more than 100 000 data items collected over a three-month period. The evaluation was supported with 'Computer Aided Evaluation' (CAEv) and telecommunications. Acceptance criteria for the results were established at the beginning ofthe study. Nearly all ofthe analytes met the imprecision limits.' within-run imprecision (as CVs) was 2l/ofor enzyme and substrate assays, l%for ISE methods and 5l/o for immunoassays; between-day imprecision was 3l/ofor enzyme and substrate assays, 2o//o for ISE methods and 10% for immunoassays

    Multicentre evaluation of the Boehringer Mannheim/Hitachi 917 analysis system

    Get PDF
    The new selective access analysis system BM/Hitachi 917 was evaluated in an international multicentre study, mainly according to the ECCLS protocol for the evaluation of analysers in clinical chemistry. Forty-three different analytes, covering 56 different methods enzymes, substrates, electrolytes, specific proteins, drugs and urine applications were tested in seven European clinical chemistry laboratories. Additionally, the practicability of the BM/ Hitachi 917 was tested according to a standardized questionnaire. Within-run CVs (median of 3 days) for enzymes, substrates and electrolytes were <2% except for creatine-kinase MB isoform and lipase at low concentration. For proteins, drugs and urine analytes the within-run CVs were < 4% except for digoxin and albumin in urine. Between-day median CVs were generally < 3% for enzymes, substrates and electrolytes, and < 6% for proteins, drugs and urine analytes, except for lipase, creatine kinase and MB isoform, D-dimer, glycosylated haemoglobin, rheumatoid factors, digoxin, digitoxin, theophylline and albumin in urine in some materials. Linearity was found according to the test specifications or better and there were no relevant effects seen in drift and carry-over testing. The interference results clearly show that also for the BM/Hitachi 917 interference exists sometimes, as could be expected because of the chemistries applied. It is a situation that can be found in equivalent analysers as well. The accuracy is acceptable regarding a 95–105% recovery in standard reference material, with the exception of the creatinine Jaffé method. Most of the 160 method comparisons showed acceptable agreement according to our criteria: enzymes, substrates, urine analytes deviation of slope ± 5%, electrolytes ± 3%, and proteins and drugs ± 10%. The assessment of practicability for 14 groups of attributes resulted in a grading of one–three scores better for the BM/Hitachi 917 than the present laboratory situation. In conclusion, the results of the study showed good analytical performance and confirmed the usefulness of the system as a consolidated workstation in medium-sized to large clinical chemistry laboratories
    • …
    corecore