19,327 research outputs found

    On the two-body problem in general relativity

    Get PDF
    We consider the two-body problem in post-Newtonian approximations of general relativity. We report the recent results concerning the equations of motion, and the associated Lagrangian formulation, of compact binary systems, at the third post-Newtonian order (1/c^6 beyond the Newtonian acceleration). These equations are necessary when constructing the theoretical templates for searching and analyzing the gravitational-wave signals from inspiralling compact binaries in VIRGO-type experiments.Comment: 10 pages, to appear in a special issue of Comptes Rendus de l'Academie des Sciences, Paris, on the subject "Missions Spatiales en Physique Fondamentale

    Higher-order spin effects in the dynamics of compact binaries II. Radiation field

    Get PDF
    Motivated by the search for gravitational waves emitted by binary black holes, we investigate the gravitational radiation field of point particles with spins within the framework of the multipolar-post-Newtonian wave generation formalism. We compute: (i) the spin-orbit (SO) coupling effects in the binary's mass and current quadrupole moments one post-Newtonian (1PN) order beyond the dominant effect, (ii) the SO contributions in the gravitational-wave energy flux and (iii) the secular evolution of the binary's orbital phase up to 2.5PN order. Crucial ingredients for obtaining the 2.5PN contribution in the orbital phase are the binary's energy and the spin precession equations, derived in paper I of this series. These results provide more accurate gravitational-wave templates to be used in the data analysis of rapidly rotating Kerr-type black-hole binaries with the ground-based detectors LIGO, Virgo, GEO 600 and TAMA300, and the space-based detector LISA.Comment: includes the correction of an erratum to be published in Phys. Rev.

    On the equations of motion of point-particle binaries at the third post-Newtonian order

    Full text link
    We investigate the dynamics of two point-like particles through the third post-Newtonian (3PN) approximation of general relativity. The infinite self-field of each point-mass is regularized by means of Hadamard's concept of ``partie finie''. Distributional forms associated with the regularization are used systematically in the computation. We determine the stress-energy tensor of point-like particles compatible with the previous regularization. The Einstein field equations in harmonic coordinates are iterated to the 3PN order. The 3PN equations of motion are Lorentz-invariant and admit a conserved energy (neglecting the 2.5PN radiation reaction). They depend on an undetermined coefficient, in agreement with an earlier result of Jaranowski and Schaefer. This suggests an incompleteness of the formalism (in this stage of development) at the 3PN order. In this paper we present the equations of motion in the center-of-mass frame and in the case of circular orbits.Comment: 12 pages, to appear in Physics Letters A, minor changes include

    On the accuracy of the post-Newtonian approximation

    Get PDF
    We apply standard post-Newtonian methods in general relativity to locate the innermost circular orbit (ICO) of irrotational and corotational binary black-hole systems. We find that the post-Newtonian series converges well when the two masses are comparable. We argue that the result for the ICO which is predicted by the third post-Newtonian (3PN) approximation is likely to be very close to the ``exact'' solution, within 1% of fractional accuracy or better. The 3PN result is also in remarkable agreement with a numerical calculation of the ICO in the case of two corotating black holes moving on exactly circular orbits. The behaviour of the post-Newtonian series suggests that the gravitational dynamics of two bodies of comparable masses does not resemble that of a test particle on a Schwarzschild background. This leads us to question the validity of some post-Newtonian resummation techniques that are based on the idea that the field generated by two black holes is a deformation of the Schwarzschild space-time.Comment: 20 pages, in "2001: a relativistic spacetime odyssey", Proc. of the 25th Johns Hopkins Workshop, I. Ciufolini, D. Dominici and L. Lusanna (eds.), World Scientific, p. 411 (2001

    Energy losses by gravitational radiation in inspiralling compact binaries to five halves post-Newtonian order

    Get PDF
    This paper derives the total power or energy loss rate generated in the form of gravitational waves by an inspiralling compact binary system to the five halves post-Newtonian (2.5PN) approximation of general relativity. Extending a recently developed gravitational-wave generation formalism valid for arbitrary (slowly-moving) systems, we compute the mass multipole moments of the system and the relevant tails present in the wave zone to 2.5PN order. In the case of two point-masses moving on a quasi-circular orbit, we find that the 2.5PN contribution in the energy loss rate is entirely due to tails. Relying on an energy balance argument we derive the laws of variation of the instantaneous frequency and phase of the binary. The 2.5PN order in the accumulated phase is significantly large, being grossly of the same order of magnitude as the previous 2PN order, but opposite in sign. However finite mass effects at 2.5PN order are small. The results of this paper should be useful when analyzing the data from inspiralling compact binaries in future gravitational-wave detectors like VIRGO and LIGO.Comment: 39 pages, version which includes the correction of an Erratum to be published in Phys. Rev. D (2005

    Gravitational waves and dynamics of compact binary systems

    Get PDF
    Part A of this article is devoted to the general investigation of the gravitational-wave emission by post-Newtonian sources. We show how the radiation field far from the source, as well as its near-zone inner gravitational field, can (in principle) be calculated in terms of the matter stress-energy tensor up to any order in the post-Newtonian expansion. Part B presents some recent applications to the problems of the dynamics and gravitational-wave flux of compact binary systems. The precision reached in these developments corresponds to the third post-Newtonian approximation.Comment: Plenary lecture given at the 16th International Conference on General Relativity and Gravitation. To appear in the proceedings, edited by N.T. Bishop and S.D. Maharaj, World Scientifi

    Dipolar Particles in General Relativity

    Get PDF
    The dynamics of "dipolar particles", i.e. particles endowed with a four-vector mass dipole moment, is investigated using an action principle in general relativity. The action is a specific functional of the particle's world line, and of the dipole moment vector, considered as a dynamical variable. The first part of the action is inspired by that of a particle with spin moving on an arbitrary gravitational background. The second part is intended to describe, at some effective level, the internal non-gravitational force linking together the "microscopic" constituents of the dipole. We find that some solutions of the equations of motion and evolution of the dipolar particles correspond to an equilibrium state for the dipole moment in a gravitational field. Under some hypothesis we show that a fluid of dipolar particles, supposed to constitute the dark matter, reproduces the modified Newtonian dynamics (MOND) in the non relativistic limit. We recover the main characteristics of a recently proposed quasi-Newtonian model of "gravitational polarization".Comment: 33 pages, 6 figures, to appear in Classical and Quantum Gravit

    On the Role of Low-Energy CP Violation in Leptogenesis

    Full text link
    The link between low-energy CP violation and leptogenesis became more accessible with the understanding of flavor effects. However, a definite well-motivated model where such a link occurs was still lacking. Adjoint SU(5) is a simple grand unified theory where neutrino masses are generated through the Type I and Type III seesaw mechanisms, and the lepton asymmetry is generated by the fermionic triplet responsible for the Type III seesaw. We focus exclusively on the case of inverted hierarchy for neutrinos, and we show that successful flavored leptogenesis in this theory strongly points towards low-energy CP violation. Moreover, since the range of allowed masses for the triplet is very restricted, we find that the discovery at the LHC of new states present in the theory, together with proton decay and unification of gauge couplings, can conspire to provide a hint in favor of leptogenesis.Comment: 12 pages, 6 figure
    corecore