942 research outputs found

    Indian Oratory: Famous Speeches by Noted Indian Chieftains

    Get PDF

    The Minority in The Minority, Black Women in Computer Science Fields: A Phenomenological Study

    Get PDF
    The purpose of this transcendental phenomenological study was to describe the lived experiences of Black women with a bachelor’s, master’s, or doctoral degree in computer science, currently employed in the United States. The theory guiding this study was Krumboltz’s social learning theory of career decision-making, as it provides a foundation for understanding how a combination of factors leads to an individual’s educational and occupational preferences and skills. This qualitative study answered the following central research question: What are the lived experiences of Black women with a bachelor’s, master’s, or doctoral degree in computer science, currently employed in the United States? Purposeful criterion sampling was used to select between 12 to 15 participants from the Society of Women Engineers who met the following criteria: a female, Black or African American, with a bachelor’s, master’s, or doctoral degree in computer science, graduated from an accredited college, university, or vocational program, and currently employed in the United States. Data collection methods included individual interviews, letter writing, and focus groups. Data analysis followed Moustakas modified approach: setting aside personal experiences and prejudgments, organizing data and conducting horizonalization, developing clusters of meaning into common themes, generating and combining textural and structural descriptions, and generating a composite description of the phenomenon experienced by all participants

    A Model To Measure Supination And Pronation Of The Foot Over Different Levels Of Physiological Stress Using An In-Shoe Force Monitoring System

    Get PDF
    The purpose of this study was to create a diagnostic model of supination and pronation of the foot using vertical ground reaction forces. A size adjustable capacitive transducer retaining 960 individual pressure cells was used to assess orthopaedic parameters of gait cyale timing and vertical ground reaction forces. A pilot sample of five males were used for this model. The subjects were exposed to six experimental conditions. These being; a) a walk, b) jog, c) walk on treadmill, and d) three levels of perceived exertion (mild, moderate and hard running). Perceived exertion was measured with the Borg (RPE) scale. All subjects were measured in the same brand of athletic shoe to control for intershoe differences. The ptonation/supination model was determined by medial/lateral force and timing measurements of the calcaneus, forefoot prominence, arch, the first and fifth metatarsal heads and the toe off (end of gait cycle). Results indicated bi-Iateral differences in the medial and lateral force measurements of the calcaneus. Timing in this area was slightly different. Medial to lateral timing pronation was evidenced in the treadmill walking and moderate running condition. As well, the loading of the first and fifth metatarsal heads as a percentage of the gait cycle did not change over the running conditions. The preliminary results of five subjects provides for limited support of a vertical ground reaction model to assess pronation and supination. Further research with techniques such as high speed photography will allow for clarification of this model

    DYNAMIC MEASUREMENT OF FORCE WITHIN THE SHOE DURING CONDITIONS OF PERCEIVED EXERTION

    Get PDF
    INTRODUCTION Athletics and recreation are becoming a very large component of modem day society. Now, more than ever, more people are becoming very active and involved in recreational pursuits that include aerobics and running/jogging. The resultant increase in activity has lead to a noted increase in injuries (Nigg, 1985; Mckenzie et al., 1985). James et al (cited in Cavanagh, 1990), in a study of 180 injured runners identified three categories of running injury problem areas. These areas being: a) training errors; b)anatomic factors (biomechanics); and c) shoes and surfaces. Two thirds of these injuries were accounted for by training errors (increased mileage or increased intensity). Training errors concerning sudden increases in mileage or intensity tend to subject the body to new or greater than expected physiological stressors. Voloshin and Wosk (1981), have investigated the relationship between heel strike shock wave transmission and joint degeneration in walking subjects. Taken one step further, the implications of damage to the muscle-skeletal system by running is noted by Cavanagh (1990). This combined with the Nigg et al. (1983) data that suggests a relationship between the hardness of the athletic (running) surface and the incidence of injury has serious implications for the recreational runner/athlete. Clarke et al. (1985) have highlighted the possible injurious force involved in tibial accelerations that are the result of the runner taking longer strides. Since most people retain a constant stride frequency, as velocity increases, the athlete tends to increase their stride length. The resultant increase in stride length increases impact forces at the joint. This combined with the increase of ground reaction forces with higher running speeds (Munro et al., 1987) identifies high impact forces as a major factor to be considered when investigating the causal nature of running injuries. Research into the type of shoe and ground reaction forces has been equivocal. Nigg and Bahlsen (1988) have stated that shoes with the hardest mid soles elicit the lowest maximal vertical forces. Conversely other research has indicated that shoe hardness is related to higher (vertical) loading rates. Listed above are a number of factors involved in the prediction of running injuries. Further research is needed to discover the causative factors involved in etiology of sport medicine running injuries. An analysis of running shoes, in particular the vertical ground reaction forces, may account for dynamic patterns of gait. Running at different levels of perceived exertion may elicit clues as to the biomechanics patterns that may be injurious to runners. For example, the gait of a runner at the beginning of the run may be markedly different from the gait at the end of the run. Variables such as intensity and distance will greatly affect the athlete's form as they become more tired. Thus, the number of running injuries (2/3 of Clarke's population) as a result of improper training may be the function of bad form (gait mechanics). An analysis under different levels of exertion will identify patterns of pressure with the foot that may have implications for the construction and design of athletic footwear as well as training methods for runners. This study was an attempt to understand the dynamic of in-shoe vertical ground reaction forces within the shoe under differing levels of perceived exertion. Research in the area of running shoe forces may lead to the development of a better product that will decrease the rate and type of running injuries

    Sheep Updates 2005 - Part 1

    Get PDF
    This session covers seven papers from different authors: Boosting lambing percentages of WA sheep flocks. R.W. Kelly CSIRO Livestock Industries, Floreat WA , R. Kingwell Department of Agriculture WA, Kiwis can fly - 30% higher lambing in 15 years, AR Bray, Meat and Wool New Zealand, Wellington, New Zealand Rams are not a trivial expense, so what can you do to maximise on your investment? Chri Oldham, Department of Agriculture Western Australia, Graeme Martin, University of West Australia. Care for mun - fetal programming, lamb survival and lifetime performance. RW Kelly CSIRO Livestock Industries, Floreat WA Boost lamb survival - select calm ewes, D Blanch University of western Australia, D Ferguson CSIRO FD McMaster Lab, NSW Getting high marking percentages in WA, Keith Crocker, Department of Agriculture Western Australia. Healthy, Welfare and Wise! Di Evans, Department of Agriculture Western Australi

    Near-Infrared Light Exposure Triggers ROS to Downregulate Inflammatory Cytokines Induced by SARS-CoV-2 Spike Protein in Human Cell Culture

    Get PDF
    The leading cause of mortality from SARS-CoV-2 is an exaggerated host immune response, triggering cytokine storms, multiple organ failure and death. Current drug- and vaccine-based therapies are of limited efficacy against novel viral variants. Infrared therapy is a non-invasive and safe method that has proven effective against inflammatory conditions for over 100 years. However, its mechanism of action is poorly understood and has not received widespread acceptance. We herein investigate whether near-infrared (NIR) light exposure in human primary alveolar and macrophage cells could downregulate inflammatory cytokines triggered by the SARS-CoV-2 spike (S) protein or lipopolysaccharide (LPS), and via what underlying mechanism. Our results showed a dramatic reduction in pro-inflammatory cytokines within days of NIR light treatment, while anti-inflammatory cytokines were upregulated. Mechanistically, NIR light stimulated mitochondrial metabolism, induced transient bursts in reactive oxygen species (ROS) and activated antioxidant gene transcription. These, in turn, downregulated ROS and inflammatory cytokines. A causal relationship was shown between the induction of cellular ROS by NIR light exposure and the downregulation of inflammatory cytokines triggered by SARS-CoV-2 S. If confirmed by clinical trials, this method would provide an immediate defense against novel SARS-CoV-2 variants and other inflammatory infectious diseases

    Microcoil Spring Interconnects for Ceramic Grid Array Integrated Circuits

    Get PDF
    As integrated circuit miniaturization trends continue, they drive the need for smaller higher input/output (I/O) packages. Hermetically sealed ceramic area array parts are the package of choice by the space community for high reliability space flight electronic hardware. Unfortunately, the coefficient of thermal expansion mismatch between the ceramic area array package and the epoxy glass printed wiring board limits the life of the interconnecting solder joint. This work presents the results of an investigation by Marshall Space Flight Center into a method to increase the life of this second level interconnection by the use of compliant microcoil springs. The design of the spring and its attachment process are presented along with thermal cycling results of microcoil springs (MCS) compared with state-of-the-art ball and column interconnections. Vibration testing has been conducted on MCS and high lead column parts. Radio frequency simulation and measurements have been made and the MCS has been modeled and a stress analysis performed. Thermal cycling and vibration testing have shown MCS interconnects to be significantly more reliable than solder columns. Also, MCS interconnects are less prone to handling damage than solder columns. Future work that includes shock testing, incorporation into a digital signal processor board, and process evaluation of expansion from a 400 I/O device to a device with over 1,100 I/O is identified

    Densification superficielle de matériaux poreux par choc laser

    No full text
    Laser-driven shock-waves are used as a surface treatement for compacting porous materials. The compaction depth is typically a few hundreds of microns. The behavior of the porous medium is described through a compaction model based on the α theory of Herrmann. This model has been introduced into a one-dimensional finite difference hydrodynamic code describing the behavior of a target under the action of a laser-generated shock-wave. The code enables us to compute the compaction depth as a function of irradiation conditions, nature and initial porosity of the material. Experiments are performed on aluminum powder. Samples are observed by optical microscopy. The residual porosity is estimated by image analysis. Experimental results and computed compaction profiles correlate well

    Pi‐29

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110026/1/cptclpt200664.pd
    • 

    corecore