120 research outputs found

    Cytoskeletal turnover and Myosin contractility drive cell autonomous oscillations in a model of Drosophila Dorsal Closure

    Get PDF
    Oscillatory behaviour in force-generating systems is a pervasive phenomenon in cell biology. In this work, we investigate how oscillations in the actomyosin cytoskeleton drive cell shape changes during the process of Dorsal Closure, a morphogenetic event in Drosophila embryo development whereby epidermal continuity is generated through the pulsatile apical area reduction of cells constituting the amnioserosa (AS) tissue. We present a theoretical model of AS cell dynamics by which the oscillatory behaviour arises due to a coupling between active Myosin-driven forces, actin turnover and cell deformation. Oscillations in our model are cell-autonomous and are modulated by neighbour coupling, and our model accurately reproduces the oscillatory dynamics of AS cells and their amplitude and frequency evolution. A key prediction arising from our model is that the rate of actin turnover and Myosin contractile force must increase during DC in order to reproduce the decrease in amplitude and period of cell area oscillations observed in vivo. This prediction opens up new ways to think about the molecular underpinnings of AS cell oscillations and their link to net tissue contraction and suggests the form of future experimental measurements.Comment: 17 pages, 6 figures; added references, modified and corrected Figs. 1 and 3, corrected typos, expanded discussio

    Ants through the looking-glass

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN009079 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Correct regionalization of a tissue primordium is essential for coordinated morphogenesis.

    Get PDF
    During organ development, tubular organs often form from flat epithelial primordia. In the placodes of the forming tubes of the salivary glands in the Drosophila embryo, we previously identified spatially defined cell behaviors of cell wedging, tilting, and cell intercalation that are key to the initial stages of tube formation. Here, we address what the requirements are that ensure the continuous formation of a narrow symmetrical tube from an initially asymmetrical primordium whilst overall tissue geometry is constantly changing. We are using live-imaging and quantitative methods to compare wild-type placodes and mutants that either show disrupted cell behaviors or an initial symmetrical placode organization, with both resulting in severe impairment of the invagination. We find that early transcriptional patterning of key morphogenetic transcription factors drives the selective activation of downstream morphogenetic modules, such as GPCR signaling that activates apical-medial actomyosin activity to drive cell wedging at the future asymmetrically placed invagination point. Over time, transcription of key factors expands across the rest of the placode and cells switch their behavior from predominantly intercalating to predominantly apically constricting as their position approaches the invagination pit. Misplacement or enlargement of the initial invagination pit leads to early problems in cell behaviors that eventually result in a defective organ shape. Our work illustrates that the dynamic patterning of the expression of transcription factors and downstream morphogenetic effectors ensures positionally fixed areas of cell behavior with regards to the invagination point. This patterning in combination with the asymmetric geometrical setup ensures functional organ formation

    A dynamic microtubule cytoskeleton directs medial actomyosin function during tube formation

    Get PDF
    The cytoskeleton is a major determinant of cell-shape changes that drive the formation of complex tissues during development. Important roles for actomyosin during tissue morphogenesis have been identified, but the role of the microtubule cytoskeleton is less clear. Here, we show that during tubulogenesis of the salivary glands in the fly embryo, the microtubule cytoskeleton undergoes major rearrangements, including a 90° change in alignment relative to the apicobasal axis, loss of centrosomal attachment, and apical stabilization. Disruption of the microtubule cytoskeleton leads to failure of apical constriction in placodal cells fated to invaginate. We show that this failure is due to loss of an apical medial actomyosin network whose pulsatile behavior in wild-type embryos drives the apical constriction of the cells. The medial actomyosin network interacts with the minus ends of acentrosomal microtubule bundles through the cytolinker protein Shot, and disruption of Shot also impairs apical constriction

    From pulsatile apicomedial contractility to effective epithelial mechanics.

    Get PDF
    We review recent developments in the understanding of the biomechanics of apicomedial actomyosin and how its contractility can tense and deform tissue. Myosin pulses are driven by a biochemical oscillator but how they are modulated by the mechanical context remains unclear. On the other hand, the emergence of tissue behaviour is highly dependent on the material properties of actin, on how strongly components are connected and on the influence of neighbouring tissues. We further review the use of constitutive equations in exploring the mechanics of epithelial apices dominated by apicomedial Myosin contractility

    Emergent material properties of developing epithelial tissues.

    Get PDF
    BACKGROUND: Force generation and the material properties of cells and tissues are central to morphogenesis but remain difficult to measure in vivo. Insight is often limited to the ratios of mechanical properties obtained through disruptive manipulation, and the appropriate models relating stress and strain are unknown. The Drosophila amnioserosa epithelium progressively contracts over 3 hours of dorsal closure, during which cell apices exhibit area fluctuations driven by medial myosin pulses with periods of 1.5-6 min. Linking these two timescales and understanding how pulsatile contractions drive morphogenetic movements is an urgent challenge. RESULTS: We present a novel framework to measure in a continuous manner the mechanical properties of epithelial cells in the natural context of a tissue undergoing morphogenesis. We show that the relationship between apicomedial myosin fluorescence intensity and strain during fluctuations is consistent with a linear behaviour, although with a lag. We thus used myosin fluorescence intensity as a proxy for active force generation and treated cells as natural experiments of mechanical response under cyclic loading, revealing unambiguous mechanical properties from the hysteresis loop relating stress to strain. Amnioserosa cells can be described as a contractile viscoelastic fluid. We show that their emergent mechanical behaviour can be described by a linear viscoelastic rheology at timescales relevant for tissue morphogenesis. For the first time, we establish relative changes in separate effective mechanical properties in vivo. Over the course of dorsal closure, the tissue solidifies and effective stiffness doubles as net contraction of the tissue commences. Combining our findings with those from previous laser ablation experiments, we show that both apicomedial and junctional stress also increase over time, with the relative increase in apicomedial stress approximately twice that of other obtained measures. CONCLUSIONS: Our results show that in an epithelial tissue undergoing net contraction, stiffness and stress are coupled. Dorsal closure cell apical contraction is driven by the medial region where the relative increase in stress is greater than that of stiffness. At junctions, by contrast, the relative increase in the mechanical properties is the same, so the junctional contribution to tissue deformation is constant over time. An increase in myosin activity is likely to underlie, at least in part, the change in medioapical properties and we suggest that its greater effect on stress relative to stiffness is fundamental to actomyosin systems and confers on tissues the ability to regulate contraction rates in response to changes in external mechanics.We thank the following funding bodies for their support: Herchel Smith Fund (PFM), Ministerio de Ciencia e Innovación (NG and JD, BFU2011-25828 and “Ramón y Cajal” fellowship award), Marie Curie Career Integration Grant (NG, PCIG09-GA-2011-293479), Biotechnology and Biological Sciences Research Council (GBB, grant No. BB/J010278/1) and Rhône-Alpes Complex System Institute (JE)

    The tricellular vertex-specific adhesion molecule Sidekick facilitates polarised cell intercalation during Drosophila axis extension.

    Get PDF
    In epithelia, tricellular vertices are emerging as important sites for the regulation of epithelial integrity and function. Compared to bicellular contacts, however, much less is known. In particular, resident proteins at tricellular vertices were identified only at occluding junctions, with none known at adherens junctions (AJs). In a previous study, we discovered that in Drosophila embryos, the adhesion molecule Sidekick (Sdk), well-known in invertebrates and vertebrates for its role in the visual system, localises at tricellular vertices at the level of AJs. Here, we survey a wide range of Drosophila epithelia and establish that Sdk is a resident protein at tricellular AJs (tAJs), the first of its kind. Clonal analysis showed that two cells, rather than three cells, contributing Sdk are sufficient for tAJ localisation. Super-resolution imaging using structured illumination reveals that Sdk proteins form string-like structures at vertices. Postulating that Sdk may have a role in epithelia where AJs are actively remodelled, we analysed the phenotype of sdk null mutant embryos during Drosophila axis extension using quantitative methods. We find that apical cell shapes are abnormal in sdk mutants, suggesting a defect in tissue remodelling during convergence and extension. Moreover, adhesion at apical vertices is compromised in rearranging cells, with apical tears in the cortex forming and persisting throughout axis extension, especially at the centres of rosettes. Finally, we show that polarised cell intercalation is decreased in sdk mutants. Mathematical modelling of the cell behaviours supports the notion that the T1 transitions of polarised cell intercalation are delayed in sdk mutants, in particular in rosettes. We propose that this delay, in combination with a change in the mechanical properties of the converging and extending tissue, causes the abnormal apical cell shapes in sdk mutant embryos

    Adhesion-regulated junction slippage controls cell intercalation dynamics in an Apposed-Cortex Adhesion Model.

    Get PDF
    Funder: University of Cambridge Herchel Smith FundCell intercalation is a key cell behaviour of morphogenesis and wound healing, where local cell neighbour exchanges can cause dramatic tissue deformations such as body axis extension. Substantial experimental work has identified the key molecular players facilitating intercalation, but there remains a lack of consensus and understanding of their physical roles. Existing biophysical models that represent cell-cell contacts with single edges cannot study cell neighbour exchange as a continuous process, where neighbouring cell cortices must uncouple. Here, we develop an Apposed-Cortex Adhesion Model (ACAM) to understand active cell intercalation behaviours in the context of a 2D epithelial tissue. The junctional actomyosin cortex of every cell is modelled as a continuous viscoelastic rope-loop, explicitly representing cortices facing each other at bicellular junctions and the adhesion molecules that couple them. The model parameters relate directly to the properties of the key subcellular players that drive dynamics, providing a multi-scale understanding of cell behaviours. We show that active cell neighbour exchanges can be driven by purely junctional mechanisms. Active contractility and cortical turnover in a single bicellular junction are sufficient to shrink and remove a junction. Next, a new, orthogonal junction extends passively. The ACAM reveals how the turnover of adhesion molecules regulates tension transmission and junction deformation rates by controlling slippage between apposed cell cortices. The model additionally predicts that rosettes, which form when a vertex becomes common to many cells, are more likely to occur in actively intercalating tissues with strong friction from adhesion molecules

    The Diaphragm and Lubricant Gel for Prevention of Cervical Sexually Transmitted Infections: Results of a Randomized Controlled Trial

    Get PDF
    BACKGROUND: We evaluated the effectiveness of the Ortho All-Flex Diaphragm, lubricant gel (Replens) and condoms compared to condoms alone on the incidence of chlamydial and gonococcal infections in an open-label randomized controlled trial among women at risk of HIV/STI infections. METHODS: We randomized 5045 sexually-active women at three sites in Southern Africa. Participants who tested positive for curable STIs were treated prior to enrollment as per local guidelines. Women were followed quarterly and tested for Chlamydia trachomatis (CT) or Neisseria gonorrhoeae (GC) infection by nucleic-acid amplification testing (Roche Amplicor) using first-catch urine specimens. STIs detected at follow-up visits were treated. We compared the incidence of first infection after randomization between study arms in both intent-to-treat (ITT) and per-protocol populations. FINDINGS: Baseline demographic, behavioral and clinical characteristics were balanced across study arms. Nearly 80% of participants were under 35 years of age. Median follow-up time was 21 months and the retention rate was over 93%. There were 471 first chlamydia infections, 247 in the intervention arm and 224 in the control arm with an overall incidence of 6.2/100 woman-years (wy) (relative hazard (RH) 1.11, 95% Confidence Interval (CI): 0.93-1.33; p = 0.25) and 192 first gonococcal infections, 95 in the intervention arm and 97 in the control arm with an overall incidence of 2.4/100wy (RH 0.98, 95%CI: 0.74-1.30; p = 0.90). Per protocol results indicated that when diaphragm adherence was defined as "always use" since the last visit, there was a significant reduction in the incidence of GC infection among women randomized to the intervention arm (RH 0.61, 95%CI: 0.41-0.91, P = 0.02). INTERPRETATION: There was no difference by study arm in the rate of acquisition of CT or GC. However, our per-protocol results suggest that consistent use of the diaphragm may reduce acquisition of GC. TRIAL REGISTRATION: ClinicalTrials.gov NCT00121459
    corecore