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SUMMARY

The cytoskeleton is a major determinant of cell-
shape changes that drive the formation of complex
tissues during development. Important roles for
actomyosin during tissue morphogenesis have
been identified, but the role of the microtubule cyto-
skeleton is less clear. Here, we show that during
tubulogenesis of the salivary glands in the fly em-
bryo, the microtubule cytoskeleton undergoes major
rearrangements, including a 90� change in alignment
relative to the apicobasal axis, loss of centrosomal
attachment, and apical stabilization. Disruption of
the microtubule cytoskeleton leads to failure of api-
cal constriction in placodal cells fated to invaginate.
We show that this failure is due to loss of an apical
medial actomyosin networkwhose pulsatile behavior
in wild-type embryos drives the apical constriction of
the cells. The medial actomyosin network interacts
with the minus ends of acentrosomal microtubule
bundles through the cytolinker protein Shot, and
disruption of Shot also impairs apical constriction.

INTRODUCTION

Tissue formation during embryogenesis is largely driven by cell-

shape changes and cell rearrangements. Cell shape itself

is determined intracellularly by the cytoskeleton as well as

by cell-extrinsic forces. Over the last decade, the importance

of the actin cytoskeleton in the determination of cell shape

has been shown for many tissues (Pollard and Cooper, 2009).

Actin, with myosin, forms contractile arrays that are key con-

stituents of different morphogenetic processes ranging from

epithelial folding to cell intercalation and tissue convergence

(Bertet et al., 2004; Martin et al., 2009; Simões et al., 2010).

Important functions for different actomyosin structures have

emerged, and a distinct population of apical medial actomyosin

forming an interlinked network across many cell diameters may

be crucial for apical cell constriction and the size of apical cell-

cell junctions (Martin et al., 2009; Mason et al., 2013; Rauzi

et al., 2010). However, relatively little is known of the roles of
562 Developmental Cell 29, 562–576, June 9, 2014 ª2014 The Autho
microtubules (MTs) during morphogenesis and cell-shape

changes.

MTs serve as major tracks for cellular transport, including an

important role inmembraneuptakeanddelivery. Theyarealso im-

portant for the turnover of adhesion receptors through endo- and

exocytosis during cell growth and cell-shape changes (Akhma-

novaet al., 2009;Mimori-Kiyosue, 2011). However,whereas actin

and actomyosin have roles in directly driving cell-shape changes,

defined roles for MTs during these processes are scarcer. Exam-

ples of roles of MTs inDrosophilamorphogenesis include roles in

cell flattening during amnioserosa elongation (Pope and Harris,

2008), during the zippering stages of dorsal closure (Jankovics

and Brunner, 2006), and in the establishment of the correct

tracheal branching pattern in embryos (Brodu et al., 2010).

It remains to be elucidated how the actin and MT cytoskele-

tons interact during cell-shape changes and morphogenesis,

even though we know that such crosstalk must be important

(Bosher et al., 2003; Hetherington et al., 2011; Lee and Kolodziej,

2002; Röper and Brown, 2003). The clearest example for cross-

talk is between aster MTs and the contractile actomyosin ring

during cell division (D’Avino et al., 2008; Somers and Saint,

2003; Vale et al., 2009). Additionally, during cell migration and

also growth cone steering, close interplay between actin and

MTs is important (Basu and Chang, 2007; Broussard et al.,

2008; Schaefer et al., 2008).

We have used a model process of tube formation to address

the role of the MT cytoskeleton during tissue morphogenesis.

The tubes of the salivary gland in the Drosophila embryo form

from two epithelial placodes through a process of highly coordi-

nated apical cell constriction and invagination (Figure 1A) (An-

drew and Ewald, 2010; Myat and Andrew, 2000). Once the cells

of the placode have been specified, no further cell division or

death occurs here, leaving cell-shape changes and rearrange-

ments as the driving forces of the invagination and making this

an ideal system to study how cell-shape changes and rearrange-

ments drive tube invagination. Topologically similar processes of

tube formation or budding in mammals can be found during early

lung morphogenesis or the elaboration of kidney tubules (Cos-

tantini and Kopan, 2010; Warburton et al., 2010). We have previ-

ously shown that actomyosin plays an important role during

morphogenesis of the glands and identified specific subpools

of actomyosin present in the gland placode, in particular a dense

junctional and apical medial actomyosin network as well as a

circumferential actomyosin cable (Röper, 2012).
rs
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Figure 1. Microtubule Rearrangements during Early Salivary Gland Invagination

(A) Confocal stacks illustrating the position of the salivary gland placode at early stage 11 (top panel; green) and of the fully invaginated glands at stage 15 (lower

panel; green). A, anterior; P, posterior.

(B) 3D rendering of apical cortices marked by Crumbs illustrates the early invagination of placodal cells (green), processing from a flat epithelial sheet at early

stage 11 (left) to an early invaginated pit at late stage 11 (right). Small arrows in (A) and (B) point to the ventral midline; large arrow in (B) points to the forming pit;

green dotted lines in (B) mark the placode area.

(C–E0) Lateral section views of placodal cells at early stage 11 before apical constriction (C), midstage 11 during constriction but before invagination (D), and late

stage 11 after initial invagination (E). srcGFP (under control of fkhGal4) is shown in inverse panels (C)–(E) to outline membranes of placodal cells. Labeling for

tyrosinated a-tubulin (green in C0–E0) and acetylated a-tubulin (red in C0–E0) reveals that the number of MTs projecting from the apical surface into the cells

increases during early constriction and invagination. The arrows in (E) and (E0) point to the invaginating pit.

(F–H) Surface views of placodes showing that MTs undergo a 90� rearrangement during cell constriction. At early stage 11, labeling for acetylated a-tubulin (red)

shows a denseMT network lying parallel to the apical surface of the cells (F). Duringmidstage 11, theseMT bundles change orientation (G) to run perpendicular to

the apical surface as longitudinal bundles by late stage 11 (H). Constricting apices are marked by srcGFP in green. White boxes indicate areas magnified in the

center and right panels; small arrows point to apical parallel MTs (F) and the end foci of longitudinal bundles (H); large arrow points to the invaginating pit; white

dotted lines mark the placode area.

(I) z section of an MT bundle, with the level of acetylation of MTs being greater nearer the apical surface. Acetylated a-tubulin, red; tyrosinated a-tubulin, green.

(J) Kymograph of a z section time-lapse analysis of microtubule dynamics in an invaginating cell at late stage 11; MTs are visualized using GFP-Clip170; frames

are 3.87 s apart (see Movie S1). White, blue, and red dots mark individual MTs emanating from the bundle.

(K) Schematic of MT rearrangements in the placode during stage 11.

See also Figure S1 and Movie S1.
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Microtubules Affect Medial Actomyosin
We demonstrate that during early steps of tube formation, the

placodal MT cytoskeleton undergoes a radical 90� rearrange-

ment with respect to the apicobasal axis, leading to a network

of acentrosomal, longitudinal (parallel to the apicobasal axis)

MT bundles that abut the apical medial myosin network. Deple-

tion of MTs in the placode leads to a failure of placodal cells to

constrict apically, due to a loss of the pulsatile apical medial

myosin II network. This medial myosin II network is required to

drive contractions of the apical surface of cells in wild-type

placodes, and interference with MTs, similar to interfering

directly with myosin, affects these dynamic contractions. We

show that the cytolinker protein Short Stop (Shot) is localized be-
Deve
tween apical medial actomyosin and MT (�) ends to mediate a

functional interaction between the two networks and that inter-

fering with Shot also impairs apical constriction and tube

formation.

RESULTS

Apical Microtubules Rearrange into a Longitudinal
Network Concomitant with the Onset of Apical
Constriction
To investigate MT organization during salivary gland formation,

we used embryos expressing fkhGal4 and UAS-srcGFP, which
lopmental Cell 29, 562–576, June 9, 2014 ª2014 The Authors 563
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highlighted salivary gland cells with membrane-targeted GFP

(Maybeck and Röper, 2009). In these embryos, we analyzed

the distribution of MTs by labeling tyrosinated a-tubulin, a

marker of dynamic or newly polymerized MTs, and acetylated

a-tubulin, a marker of stable and longer-lived MTs (Westermann

and Weber, 2003). We focused on the early stages of gland for-

mation, where cells prior to invagination begin to elongate along

their apicobasal axis and begin to constrict apically (early to mid-

stage 11; Figures 1B–1D), eventually leading to the formation of a

dimple that is the early invaginating tube (late stage 11; Figures

1B and 1E).

At early stage 11, MTs in most placodal cells and in the

surrounding epidermis were arranged in a dense apical array,

lying just underneath the apical plasma membrane, with few

MTs extending into the cell interior (Figures 1C0 and 1F). From

midstage 11 onward, MTs within the placode changed their

major direction of orientation by 90� to align along the apicobasal

cell axis (termed longitudinal MTs; Figures 1D0, 1E0, 1G, and 1H).

This was particularly obvious in apically grazing sections (Figures

1F–1H and 2A–2C). The rearrangement was tightly coupled in

time to the onset of constriction, in that it began in the dorsal-

posterior corner of the placode, moving further ventral and

anterior as the wave of apical constriction swept across the pla-

code. Reorientation generally appeared to take place prior to

apical constriction (Figures S1A–S1B00 available online). Longitu-

dinal MT bundles showed strong acetylation of a-tubulin, a sign

of stability, initiating from the apical surface (Figure 1I). Overall,

acetylation of MTs was increased within the placode, especially

within the highly constricting cells, in comparison to labeling of

tyrosinated MTs (Figures S1C–S1D00 0). MT bundles labeled by

Clip170-GFP, a (+) TIP-binding protein (Stramer et al., 2010),

that emanated from the apical surface showed dynamic

behavior and growth of more basal plus ends (Figure 1J; Movie

S1). A striking rearrangement of the MT cytoskeleton thus

occurred concomitant with the earliest constriction of placodal

cells (Figure 1K).

Longitudinal Microtubule Arrays Emanate from the
Apical Region in a Noncentrosomal Manner
Prior to onset of apical constriction and invagination, before

midstage 11, most apical MTs were in close contact with apical

centrosomes (Figure 2A), suggesting centrosomal nucleation. In

contrast, in the rearranged MT network at late stage 11, most

apical foci of tyrosinated and acetylated a-tubulin labeling did

not colocalize with centrosomes (Figures 2B–2D; data not shown

for acetylated a-tubulin). The apical foci of tubulin labeling at

stage 11 corresponded to minus ends of MTs, as revealed

through analysis of expression of UAS-Nod-LacZ and UAS-

Kin-LacZ, two motor proteins that move toward and thus label

the minus and plus ends of MTs, respectively (Figures 2E and

2F) (Clark et al., 1997), consistent with a similar orientation pre-

viously observed in fully invaginated gland cells at the end of

embryogenesis (Myat and Andrew, 2002). Acentrosomal MTs

in postmitotic epithelial cells, such as the placodal cells analyzed

here, could be nucleated apically from g-tubulin complexes not

associated with the centrosomes (Bartolini and Gundersen,

2006; Feldman and Priess, 2012; Mogensen, 1999). We thus

analyzed g-tubulin distribution and found a small but significant

increase in the amount of apical g-tubulin that was not associ-
564 Developmental Cell 29, 562–576, June 9, 2014 ª2014 The Autho
ated with the centrosomes labeled by the centrosomal protein

asterless after MT rearrangement (Figures 2G and 2H; quantified

in Figure 2J; Figures S1E–S1H0), suggesting that this noncentro-

somal apical g-tubulin might be involved in nucleating the longi-

tudinal MTs. In addition, weaker foci of asterless were visible that

colocalized with the ends of the rearranged longitudinal MT

bundles (Figure 2I, arrows, MTs labeled using acetylated

a-tubulin staining), suggesting that both g-tubulin and asterless

could form constituents of this apical noncentrosomal MT-orga-

nizing center.

Microtubule Loss Affects Early Apical Constriction in
the Placode
In order to analyze whether the MT cytoskeleton in the salivary

gland placode was important for early invagination steps, we

made use of the MT-severing protein Spastin (Roll-Mecak and

Vale, 2008). We overexpressed Spastin specifically in the pla-

code, using fkhGal4 and UAS-Spastin, and analyzed the effect

on the MT cytoskeleton and cell behavior. Although the driver

appeared not strong enough to affect MTs in all placodes, Spas-

tin expression led to a clear reduction of MTs in 36% of placodes

at early stage 11 of embryos of the genotype fkhGal4 x UAS-

Spastin (n = 105; see also Experimental Procedures; Figure S2).

We analyzed cell shapes using E-cadherin labeling of the apical

circumference combined with microtubule labeling to identify

affected placodes. We segmented apical cell outlines in control

and MT-depleted placodes at mid to late stage 11, and from this

could calculate both apical surface areas of placodal cells and

also the dispersion of cells of different sizes (defined as the

average difference in area between each cell and all of its neigh-

bors; see Experimental Procedures). All placodes with a

depleted MT cytoskeleton appeared strikingly different from

the control (compare Figures 3A and 3B). Whereas in the control,

cells began to constrict their apical surfaces in a highly ordered

fashion starting from the dorsal-posterior corner (Figures 3A and

3C; Myat and Andrew, 2000), cells in MT-depleted placodes

showed significantly fewer constricted apices (Figures 3B, 3D,

and 3E). Those cells that did constrict were dispersed

throughout the placode, unlike the wild-type cells, where

constriction was clustered in the dorsal-posterior corner of

the placode, where the invagination of the early tube initiates

(Figures 3F–3H). When Spastin-expressing salivary glands

were analyzed at stage 14 of embryogenesis, when most of

the secretory part of the gland had invaginated in the wild-type

(Figure S2F), glands with depleted MTs showed a spectrum of

phenotypes consistent with aberrant invagination, from lumen

defects to a complete failure to invaginate (Figures S2C–S2E).

Similar effects on the MT cytoskeleton and gland invagination

were also observed when another MT-severing AAA-ATPase,

Katanin (Zhang et al., 2011), was expressed in the salivary gland

placode (data not shown).

Thus, the MT organization that we observed concomitant with

onset of apical constriction and tissue bending appeared to be

an important functional part of the tube formation program.

An Apical Medial Actomyosin Network Is Disrupted in
the Absence of Microtubules
What could be the role of longitudinal MTs during the early steps

of gland invagination in the wild-type? Apical constriction during
rs



Figure 2. Microtubules Change from Centrosomal to Acentrosomal Nucleation/Anchoring during Early Invagination

(A–C) Surface projections show that at early stage 11, the ends of many apical MTs colocalize with the centrosomal protein asterless (A), but through midstage 11

this changes (B) so that by late stage 11, centrosomes labeled by asterless less frequently colocalize with MT foci (C). Asterless, green; tyrosinated a-tubulin, red;

srcGFP, blue. Arrows point to centrosomes and the matching positions in the MT channel.

(D) Quantification of colocalization of MT bundle ends and centrosomes at early and late stage 11 (350 MT bundles from six different placodes for each stage;

shown are mean ± SEM, p < 0.0001 using Student’s t test; see Table S1).

(E and F) Section views of late stage 11 placodes: Nod-LacZ, a marker of MT (�) ends (E, green), accumulates apically in a flat region of a placode, indicating that

MT (�) ends are located apically, whereas an MT (+) end marker, Kin-LacZ, is found basally (F, green). Tyrosinated a-tubulin, red. The white dotted lines mark

placodal cells.

(G and H) In surface projections of placodal cells, g-tubulin becomes less tightly centrosome associated from early stage 11 to late stage 11. At early stage 11, the

brightest g-tubulin foci (green) colocalize with centrosomes (red) labeled by asterless (G). At late stage 11, in addition to centrosome foci, further noncentrosomal

densities of g-tubulin labeling have appeared within the placode (H, green arrows), not colocalizing with centrosomes marked by asterless. Panels are higher

magnifications of boxes in Figures S1E and S1G.

(I) When asterless labeling (green) at late stage 11 is analyzed at higher laser power, it shows, in addition to strong labeling of centrosomes, many fainter

acentrosomal foci that colocalize with apical MT foci (arrows). Acetylated a-tubulin, red; srcGFP, blue.

(J) Quantification of the mean noncentrosomal g-tubulin fluorescence inside versus outside the placode (six placodes were analyzed for each stage; shown are

mean ± SEM, p = 0.0069 using Student’s t test; see Table S1).

See also Figure S1.
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Microtubules Affect Medial Actomyosin
epithelial morphogenesis is often mediated by apical actomy-

osin, located not only at the level of the adherens junctions as

an actomyosin belt but also as a medial network of actomyosin
Deve
underlying the apices of the cells (Blanchard et al., 2010; David

et al., 2010; Martin et al., 2009, 2010). The salivary gland placode

shows a strong increase in myosin II levels at the start of
lopmental Cell 29, 562–576, June 9, 2014 ª2014 The Authors 565



Figure 3. Depletion of the Microtubule Network Disrupts Apical Area Constriction in the Placode

(A and B) The MT cytoskeleton was depleted using expression of UAS-Spastin under fkhGal4 control. Representative surface view images of control (A) and MT-

depleted (B) placodes at late stage 11, with E-cadherin (green) labeling cell outlines and CrebA (red) marking the cells of the placode. Asterisks denote the

invagination point.

(C and D) Heat maps corresponding to (A) and (B), respectively, indicating apical surface area size determined through automated tracing of E-cadherin-labeled

cell boundaries. White lines denote the border of the placode (determined from CrebA labeling).

(E) Quantification of apical area size inMT-depleted (fkhGal4 x UAS-Spastin) and control (fkhGal4) placodes at late stage 11, showing both the percentage of cells

in different-size bins (large graph) and the cumulative percentage of cells relative to apical area size (inset: ***p << 0.001 using Kolmogorov-Smirnov two-sample

test; see Table S1). Ten placodes were segmented and analyzed for each condition; the total number of cells tracedwas N(fkhGal4) = 1,198 andN(fkhGal4 x UAS-

Spastin) = 1,122.

(F andG) Heatmaps corresponding to (A) and (B), respectively, indicating the difference in apical surface area size between any given cell and its direct neighbors.

(H) Quantification of (F) and (G) as for apical area differences above (N(fkhGal4) = 1,148, N(fkhGal4 x UAS-Spastin) = 1,117; inset: ***p << 0.001 using Kolmogorov-

Smirnov two-sample test; see Table S1).

See also Figure S2.
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Microtubules Affect Medial Actomyosin
morphogenesis, consisting of apical junctional myosin as well as

a prominent apical medial myosin II network (Röper, 2012), and

myosin II is important for wild-type invagination (Blake et al.,

1998). We thus investigated whether the MT cytoskeleton dis-

played any functional interactions with the apical actomyosin

network, using a GFP-tagged transgene of nonmuscle myosin

II regulatory light chain (MRLC; termed sqhGFP in flies) as a

readout. Some medial myosin II could already be observed in

all placodal cells prior to constriction starting within the placode,

and also in placodal cells farther away from the invaginating pit
566 Developmental Cell 29, 562–576, June 9, 2014 ª2014 The Autho
that had not yet started to contract (Figures S3A and S3C).

Very little overlap between apical MT bundles andmedial myosin

II could be found in these cells (Figures S3B–S3B00 and S3D–

S3D00). Once the placodal MTs had undergone their 90� reorien-
tation, however, the apically localized minus ends of longitudinal

MT bundles were in close contact and just abutting apical medial

myosin accumulations in 90%of cells analyzed (n = 350 cells, six

embryos; Figure 4A). This was especially clear in confocal z

sections (Figure 4B). The same close apposition could also be

observed between minus ends of MTs and apical medial actin
rs



Figure 4. Loss of Microtubules Leads to Loss of

the Apical Medial Actomyosin Network

(A–D) Longitudinal MT bundles at late stage 11 terminate

apically at foci of medial myosin (surface view, A; z section,

B) and F-actin (surface view, C; z section, D). Acetylated

a-tubulin, red; sqhGFP, green; phalloidin, green; E-cad-

herin, blue (A and B); srcGFP, blue (C and D). The arrows

and arrowheads point to colocalization of MTs and medial

actomyosin; the arrowheads in (A) and (C) point to the

bundle that is displayed in the z sections in (B) and (D). Red

brackets indicate positions of adherens junctions (AJ).

(E–H) MT depletion using UAS-Spastin and fkhGal4 dis-

rupts the apical medial actomyosin network. Comparison

of sqhGFP and utrophinGFP (to label actin) in control

(E and F) and MT-depleted (G and H) placodes (the panels

are higher magnifications of the boxes indicated in Fig-

ure S3). Red dotted lines highlight medial apical domains;

arrows point to a myosin or actin remnant upon MT

depletion.

(I and J) Quantification of the effect of MT depletion on

junctional and medial myosin (I), using sqhGFP, and actin

(J), using utrophinGFP. Shown are mean ± SEM of pla-

codal fluorescence intensity above epidermal base level;

difference for junctional myosin is p = 0.0609 and for

medial myosin is p < 0.0001, and for junctional actin is p =

0.6418 and for medial actin is p < 0.0001 using Student’s

t test (see Table S1).

See also Figure S3.
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(Figures 4C and 4D). No close apposition between junctional

actomyosin and MTs could be observed. When MTs were

depleted using UAS-Spastin and fkhGal4, the MT-depleted cells

not only displayed larger apical surface areas (as shown above)

but also showed a significant decrease in the apical medial pool

of myosin, an overall reduction of 81.8% (p < 0.0001; Figure 4E

versus Figure 4G; quantified in Figure 4I; Figures S3E and

S3F). A similar reduction of 74.2%was also observed for the api-

cal medial actin (p < 0.0001; Figure 4F versus Figure 4H; quanti-

fied in Figure 4J; Figures S3G–S3J). In contrast, the junctional

actomyosin located at the level of the adherens junctions was

much less affected by MT depletion, with junctional myosin be-

ing reduced by only 21.4% (p = 0.0609; Figure 4I) and junctional

actin decreased by only 13.6% (p = 0.6418; Figure 4J).

An Apical Medial Actomyosin Network Drives Apical
Constriction during Normal Tube Formation
The apical medial myosin network in placodal cells was highly

dynamic and showed pulsatile behavior, characterized by peri-

odic increases and decreases in intensity combined with flows

across the apical surface (Figures 5A and 5B; Figures S4A and

S4B; Movie S2). In many cells, apical constriction occurred in a

stepwise fashion, with pulses of constriction followed by periods

of stabilization (example in Figure 5C). The periodic increase in

myosin fluorescence intensity in individual cells correlated with

an increase in the rate of apical constriction (Figures 5B and

5C0). This suggested that in the salivary gland placode, apical

medial myosin was important for apical constriction and tube

invagination. Apical MT foci also showed dynamic behavior (Fig-

ures S4C–S4D0; Movie S3), reminiscent of medial myosin foci.
Figure 5. An Apical Medial Actomyosin Network Involved in Apical Co

(A) Myosin II (sqhGFP, green) is organized into an apical junctional and apical m

myosin colocalizes with cadherin (magenta), and the medial myosin forms a netw

(B) Still frames of a time-lapse movie of a sqhAX3; sqh::sqhGFP42 embryo (see Fig

the position of the cell cortex (dotted lines) of an exemplary placodal cell; arrowh

increased myosin II; red bars indicate increased constriction (see C0). The scale

(C) Apical cell area (mm2) decreases in discrete pulses (red bars) followed by a p

(C0) Quantification of the constriction rate (mm2min�1; red) in comparison to media

medial myosin II intensity is closely correlated with an increase in constriction ra

(D) Average medial myosin fluorescence (with trends removed; blue line; gs, gray

medial myosin fluctuation cycle. Two hundred and twelve full cycles of myosin (tro

Dotted lines show 95% confidence intervals.

(E and F) Myosin fluorescence intensity (with trends removed, blue lines) and stre

sample cells. Dotted red lines show the threshold value above which the strengt

(E and E0) Two sample wild-type cells (WT).

(F and F0) Two sample MT-depleted cells (Spas). Longer traces are shown for M

(G–K) Comparison of the average behavior of nine control (wild-type; black) and th

tracked cell instances (see text) for which it could be established whether a cell wa

the latter, apical radius fluctuated in 929. For MT-depleted embryo data, the numb

details of statistical analysis.

(G) Percentage of tracked placode cell instances for which medial myosin fluctuat

of independence.

(H) Distribution of cycle lengths of cells showing myosin fluctuations. Inset: cumu

upon MT depletion were significantly increased. ***p << 0.0001 using Kolmogoro

(I) Percentage of cell instances with medial myosin fluctuations for which cell-ra

pendence.

(J) Average strength ofmyosin fluctuation versus radial coordinate relative to the p

line at 0.5 amplitude 3 frequency marks the threshold below which cells were n

(K) Average rate of change of tissue area versus radial coordinate relative to the

respective 95% confidence intervals.

See also Figures S4 and S5 and Movies S2, S4, and S5.

Deve
To be able to assess the effect that MT depletion had on apical

medial actomyosin dynamics and tissue contraction, we simulta-

neously visualized myosin (using sqhGFP) and cell membranes

(using GAP43-mCherry) in wild-type and MT-depleted embryos.

We tracked cell shapes in these movies and quantified medial

myosin fluorescence (see Experimental Procedures; Movies S4

and S5). In the wild-type, the phase of average apical medial

myosin density was consistently ahead of the phase of the in-

verse of the apical cell radius by approximately one-eighth of a

cycle (Figure 5D; 212 full cycles analyzed from nine embryo

movies), suggesting that myosin drove cell-shape changes. We

classified each ‘‘cell instance’’ (meaning a movie frame through

which a cell was tracked, sampled every �20 s) as being with

or withoutmyosin fluctuation andwith or without apical area fluc-

tuation (see Experimental Procedures). Example traces for wild-

type and MT-depleted cells show clear differences in myosin

fluctuations and strength of myosin activity (Figures 5E–5F0).
We used a threshold myosin activity (frequency of fluctuation

multiplied by amplitude) of 0.5, above which cells were consid-

ered to be fluctuating. This threshold value was set to exclude

low-amplitude and/or low-frequency behavior that we would

have visually classified as nonperiodic. Pooling cell instances,

wild-type placodal cells spent a significantly greater proportion

of tracked cell time with measurable myosin fluctuations (64%

of tracked cell instances) compared to those in MT-depleted

placodes (43%; Figure 5G). Furthermore, the cycle lengths of

the myosin fluctuations were also significantly different. Wild-

type cells had shorter cycle lengths, with relatively more cycles

of less than 3 min in particular (Figure 5H), which in other tissues

has been found to be the threshold below which productive
nstriction during Tubulogenesis

edial network across the salivary gland placode (Röper, 2012). The junctional

ork-like arrangement across many neighboring cells (arrows).

ure S4A; Movie S2). The still frames show the fluctuations of medial myosin and

eads point to dynamic, pulsatile concentrations of myosin; blue bars indicate

bar represents 2 mm.

eriod of relaxation and stabilization (gray bars).

l myosin II intensity (blue) for a single exemplary cell in a placode. An increase in

te.

scale) and cell radius (with trends removed; red line) plotted against phase of

ugh to trough) were pooled and averaged from nine wild-type embryo movies.

ngth of myosin fluctuation (expressed as amplitude 3 frequency; red lines) for

h of myosin activity was defined as being periodic.

T-depleted cells because of their longer cycle lengths.

ree MT-depleted embryos (Spas; red). For control embryo data, the number of

s fluctuating or not was 2,877, of which 1,849 exhibited myosin fluctuations. Of

er of cell instances was 3,711, 1,584, and 1,106, respectively. See Table S1 for

ions could be detected (see also Movies S3 and S4). ***p << 0.0001 using G test

lative histograms indicating that cycle lengths of cells still showing fluctuations

v-Smirnov test.

dius fluctuations could also be detected. ***p << 0.0001 using G test of inde-

it center. Dashed lines are 95%confidence intervals for pooled cell data. Dotted

ot considered to be periodic.

pit center (same data as shown in Figures S4E and S4F). Dashed lines show
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tissue contraction, as opposed to unproductive area fluctuation,

is achieved (Gorfinkiel and Blanchard, 2011). MT-depleted plac-

odes probably retained some myosin fluctuations and apical

area constriction due to an incomplete depletion of MTs across

all placodal cells due to inhomogeneous fkhGal4 expression

(Figures S2B, S2B0, S3F, S3H, and S3J). Considering only cell

instances with measurable myosin fluctuation, the percentage

of these cell instances that also displayed area fluctuations

was greater in MT-depleted placodes (72% versus 52% in

wild-type; Figure 5I), suggesting that in this treatment, contrac-

tile myosin pulses were being less effectively harnessed to

generate tissue contractile tension, probably a consequence of

the increased myosin cycle length. The above differences be-

tween MT-depleted and wild-type placodes are the likely cause

of the observed defects in apical constriction uponMT depletion.

We expected myosin contractile activity to lead to some

combination of net contraction and/or tissue tension. We there-

fore investigated further the relationship betweenmyosin activity

and net contraction. Whereas there was a trend for increasing

myosin activity toward the pit in the wild-type (Figure 5J), the

strongest rate of apical area decrease, in addition to the early

invaginating pit, was observed in a radial band 20–25 mm ante-

rior-ventral to the pit (Figure 5K; Figure S4E). Thus, the pattern

of myosin activity did not completely mirror the pattern of net

area decrease in wild-type placodes. This was likely due to tis-

sue tension, and hence resistance to contraction, varying in a

radial pattern from the pit as the placode started to invaginate

to form a 3D structure. In MT-depleted placodes, the rate of

area change within the placode was reduced to less than half

of wild-type rates within the 20–25 mm radial band, and myosin

activity decreased toward the pit and was overall below the

threshold set (Figure 5K; Figure S4F). Altogether, these data

strongly suggest that in the wild-type, placode tension and

constriction were driven to a large extent by an active medial

actomyosin network (Figure S4B). MT depletion led to a reduc-

tion in both actomyosin fluctuation and fluctuation-driven pro-

ductive area changes.

To further analyze whether the loss of dynamic apical constric-

tions of placodal cells upon MT depletion was due to effects on

myosin II and not on other factors downstream of MTs, we

disrupted myosin II function specifically in placodal cells. In

sqh-null mutant embryos expressing sqhGFP under its endoge-

nous promoter as the only source of functional MRLC (Royou

et al., 2004), we specifically targeted sqhGFP for destruction

by the proteasome only in placodal cells (using UAS-deGradFP

and fkhGal4; see Experimental Procedures for the full genotype).

Loss of sqhGFP function in placodal cells consistently led to

aberrant glands with strong invagination defects at later stages

of embryogenesis (Figures S4G–S4H0). Often, cells at stage 13

remained on the surface of the embryo with wide apical surfaces

(Figures S4H–S4H00) but still showed a rearranged longitudinal

MT network (Figure S4H00 0). Time-lapse analysis of a membrane

marker in these embryos revealed that cells did not efficiently

constrict apically (Figures S4I and S4J; Movies S6 and S7).

Thus, myosin II was crucial for the dynamic apical contractility

of placodal cells.

To further exclude that the effect on medial actomyosin was

an indirect consequence of a general disruption of cells, we

analyzed markers of junctional integrity and apicobasal polarity
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in control placodes and those that had been depleted of MTs.

In a wild-type placode at late stage 11, much MT reorientation

had occurred and apical constriction had significantly pro-

gressed. In contrast, in MT-depleted placodes at late stage 11,

about 1–2 hr after the usual start of cell constriction, only

reduced apical constriction had occurred as described above.

TheseMT-depleted placodes showedwild-type levels and local-

ization of E-cadherin and Crumbs (Figure S5). This indicates that

the loss of apical medial actomyosin and loss of correct apical

constriction observed upon MT depletion were not secondary

consequences of loss of junctional integrity or apicobasal polar-

ity prior to this stage. Only at later stages (stage 12 and beyond)

did MT-depleted placodes show occasional mislocalization of

E-cadherin and Crumbs (Figures S5F, S5G, S5I, S5O, S5P,

and S5R), possibly due to effects of prolonged MT depletion

on either vesicle delivery or recycling.

Thus, the constriction of apical surfaces that initiated the

invagination of the epithelial sheet depended on a dynamic api-

cal medial actomyosin network, which in turn depended on the

MT cytoskeleton for its assembly and/or maintenance.

The Spectraplakin Shot Functionally Bridges Apical MT
Ends and Medial Actomyosin
What links the apical actomyosin and MT networks? The

spectraplakin family of cytolinkers, containing both actin- and

MT-binding domains, is a prime candidate to mediate such

interaction (Röper et al., 2002; Suozzi et al., 2012). The sole fly

spectraplakin is Shot, a large protein containing two N-terminal

actin-binding calponin homology (CH) domains and anMT-bind-

ing Gas2 domain and C terminus (Figure S6A) (Röper et al.,

2002). Shot was strongly expressed within the salivary gland

placode during early invagination (Figures 6A and 6E for an

overview). Shot was localized in a mostly cortical position at

the apical surface of placodal cells at early stage 11, similar to

its localization within the surrounding epidermal cells (Figures

6A and 6E). However, from midstage 11 onward, Shot lost

much of its cortical concentration within the placode, appearing

instead in large apical foci that often colocalized with the apical

MT foci (Figures 6B–6E). In fact, 83% of MT bundles terminated

in foci of Shot labeling at late stage 11 (Figure S6F). Shot coloc-

alization with apical MT minus ends depended on the Gas2

domain and C terminus but not on its actin-binding CH domains

(Figures S6C–S6E0). Shot foci also colocalized with the highest

accumulation of apical medial myosin (Figures 7A and 7B),

thus making it a prime candidate to bridge longitudinal MT

bundles and apical medial actomyosin. MT depletion using

UAS-Spastin blocked the Shot rearrangement: Shot remained

localized to cortices and did not become concentrated in apical

foci (Figure 7C versus Figure 7D; Figure S6G).

Shot is essential for oogenesis and egg formation (Röper and

Brown, 2004), and therefore embryos lacking both zygotic and

maternal pools of Shot during embryogenesis cannot be gener-

ated and analyzed. In embryos zygotically mutant for the null

allele shot3, we could still observe residual protein and could

not identify any phenotype in gland invagination (data not

shown). To interfere with Shot function, we expressed the EF-

hand and Gas2 domain of Shot (Figure S6A, green line), fused

to GFP under UAS control (UAS-Shot-EFGas2; Maybeck and

Röper, 2009) using a strong maternal driver, nanosGal4VP16,
rs



Figure 6. The Cytolinker Shot Relocalizes from the Cell Junctions to the Apical Ends of Microtubule Bundles during Early Invagination

(A–C) The spectraplakin Shot contains actin-binding and MT-binding domains (see Figure S6A). At early stage 11, the majority of Shot (green) localizes to the cell

cortex as described in other epithelia (A) (Röper and Brown, 2003), but during midstage 11, Shot relocalizes (B) to then colocalize with the ends of longitudinal MT

bundles (red) by late stage 11 (C); shown are surface views. Arrows in (B) and (C) point to colocalization between Shot and MT foci.

(D) z sections show Shot (green) localized at the end of an MT bundle (red). Eighty-three percent of MT bundles terminate in an apical focus of Shot (see Fig-

ure S6F). The arrowheads indicate the end of a microtubule bundle; the brackets indicate the positions of adherens junctions.

(E) Overview surface scan at late stage 11 clearly shows the change in Shot localization (green) within the constricting secretory part of the placodes (marked by

white dotted lines) compared to junctional Shot outside that placode that colocalizes with E-cadherin (red). Small arrows indicate the ventral midline.

(F) Schematic of coordinated MT and Shot reorganization during early constriction. Black arrowheads in (D) and (F) indicate position of the apical domain.

See also Figure S6.
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combined with fkhGal4. When UAS-Shot-EFGas2 was ex-

pressed using fkhGal4 alone, no perturbation of gland invagina-

tion could be observed (Maybeck and Röper, 2009). In combina-

tion with a strong maternal expression, placodal expression of

this transgene was able to cause aberrant invagination with var-

iable penetrance, with many invaginating cells not constricting in

a wild-type pattern (Figures 7E, 7G, 7I, and 7K; exemplary area

heat maps in Figures 7O and 7P; quantification in Figure 7Q; Fig-

ures S7H and S7I). Overexpression ofGFP-Shot-EFGas2 did not

seem to affect MT rearrangement into longitudinal bundles (Fig-

ure 7G versus Figure 7H), but instead appeared to have a domi-

nant-negative effect on endogenous Shot. Much of endogenous

Shot remained cortically localized and did not move into medial
Deve
apical foci (Figure 7I versus Figure 7J and insets; quantification in

Figure 7M). Medial F-actin accumulation as a readout for apical

medial actomyosin was reduced in a similar manner (Figure 7K

versus Figure 7L; quantification in Figure 7N).

Thus, Shot localization to the minus ends of MT bundles within

the apical medial domain, where it colocalized with the apical

medial myosin network, was important for normal apical

constriction during tube formation.

DISCUSSION

Our analysis shows that MTs play a crucial part in stabilizing and

maintaining themedial actomyosin network driving the formation
lopmental Cell 29, 562–576, June 9, 2014 ª2014 The Authors 571



Figure 7. Shot Links Microtubules to Medial Actomyosin, and Medial Shot Is Required for Apical Constriction

(A and B) At late stage 11, medial Shot (red) colocalizes with medial myosin (sqhGFP, green). The area marked by the white box in (A) is shown enlarged in (B).

Arrows point to sqhGFP-Shot colocalization.

(C and D) Depletion of MTs in the placode leads to a failure to relocalize Shot from the junctions to the apical medial region of placodal cells. In contrast to a control

placode (C), where Shot (red) is localized to the apical medial region (see arrows in the inset), whenMTs (acetylated a-tubulin) are depleted usingUAS-Spastin and

fkhGal4 (D), Shot remains associated with the junctional area (green, srcGFP) in the placodal cells (inset: dotted lines mark medial regions of cells; arrowheads

point to junctional Shot; quantified in Figure S7G).

(E and F) Overexpression of GFP-Shot-EFGas2 using nanosGal4 and fkhGal4 interferes with apical constriction (E) compared to the control (F). E-cadherin, red

and as a single channel in (E) and (F); GFP-Shot-EFGas2, green in (E).

(F) The single E-cadherin channel of the panel shown as a composite in (L).

(G and H) MTs rearrange and appear stabilized whenGFP-Shot-EFGas2 is overexpressed (G) as in the control (H). Insets: MT bundle ends marked by acetylated

a-tubulin (red; arrows) in between cell cortices marked by E-cadherin (green).

(I and J) Endogenous Shot (red) remains cortical whenGFP-Shot-EFGas2 is overexpressed (I; red arrowheads) in contrast to the control, where Shot relocalizes to

medial MT ends (J). Insets: Shot colocalizing with junctional E-cadherin (green) uponGFP-Shot-EFGas2 expression (I), in contrast to medial Shot accumulations

in the control (J; arrows). Shot levels are quantified in (M).

(legend continued on next page)
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of a tube in fly embryos. We observe a very dynamic medial

network of actomyosin that shows a pulsatile increase in inten-

sity correlated with a decrease in apical surface area of individual

cells. Such pulsatile actomyosin behavior is similar to what has

been observed in the fly mesoderm prior to its invagination (Mar-

tin et al., 2009, 2010; Mason et al., 2013) and in the constricting

flat sheet of amnioserosa cells during dorsal closure in the fly

embryo (Blanchard et al., 2010). The average cycle length of

myosin oscillations observed in the salivary gland placode of

�120–180 s is comparable to the cycle length of �147 s (±43.5

s) observed for medial actomyosin oscillations during germband

extension (Fernandez-Gonzalez and Zallen, 2011; Sawyer et al.,

2011), whereas the faster process of mesoderm bending and

internalization has a higher frequency of 82.8 s (±48 s) (Martin

et al., 2009), and amnioserosa oscillations reduce from more

than 4 min to 2 min as net tissue contraction commences during

dorsal closure (Gorfinkiel and Blanchard, 2011; Gorfinkiel et al.,

2009; Solon et al., 2009). The disruption of MTs using Spastin

expression in the salivary gland placode decreases the propor-

tion of time that cells show myosin oscillations, and strongly de-

creases the frequency of oscillation. In the absence of MTs, the

majority of oscillations were in a time regimewhere theywere un-

likely to drive productive apical area decrease, consistent with

previous results (Gorfinkiel and Blanchard, 2011).

There have been some previous hints that interplay between

the MT cytoskeleton and actomyosin might also regulate

morphogenesis in vertebrates. During Xenopus neurulation, the

protein Shroom3 is necessary for the reorganization and accu-

mulation of apical g-tubulin and the assembly of an apical array

of MTs (Lee et al., 2007). Shroom proteins, including Shroom3,

bind Rho kinase to activate contractile actomyosin networks

(Mohan et al., 2012). Thus, during cell-shape changes in the

forming Xenopus neural tube, Shroom appears to be a potential

linker between MTs and actomyosin. A Drosophila Shroom

protein has only recently been identified, and so far mutant anal-

ysis suggests a role in recruitment of cortical myosin (Bolinger

et al., 2010; Simões et al., 2014). A topologically related process

in Xenopus, the apical constriction of bottle cells during gastru-

lation, depends on both intact actomyosin and microtubule net-

works, revealed when constriction upon treatment with specific

chemical inhibitors was analyzed (Lee and Harland, 2007).

Furthermore, tube formation in mammals, where live analysis is

technically very challenging, also depends on apical constriction

(Bush et al., 1990). Thus, data obtained on tubulogenesis in more
Dotted lines in (A)–(J) mark the area of the placode, unless indicated otherwise.

(K and L) Placodes overexpressingGFP-Shot-EFGas2 often show reduced media

and as a single channel in inverse panels); E-cadherin, green; white boxes mark a

arrows point to medial F-actin in the control. F-actin is quantified in (N).

(M and N) Quantification of the effect of GFP-Shot-EFGas2 overexpression on jun

SEMof placodal fluorescence intensity above epidermal base level; difference for

actin is p = 0.2134 and for medial actin is p < 0.0001, using Student’s t test; n.s.

(O and P) Exemplary heat maps indicating the apical surface area size ofUAS-GFP

control embryos (N) determined through automated segmentation of E-cadheri

Asterisks denote the invagination point.

(Q) Quantification of the apical area size in GFP-Shot-EFGas2-expressing (using

stage 11, showing both percentage of cells in different-size bins (large graph) a

Kolmogorov-Smirnov two-sample test, **p << 0.01; see Table S1). For GFP-Sho

segmented and analyzed, and the total number of cells traced was N(nanosGal4

See also Figure S6.
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accessible models will be a valuable guide to further studies in

mammals.

Concomitant with medial actomyosin-driven apical constric-

tion, the MT cytoskeleton organized into a noncentrosomal

stabilized array combined with a topological rearrangement.

MTs in most epithelia are acentrosomally nucleated, a feature

conserved from flies to humans (Bartolini and Gundersen,

2006). Our analyses, and further examples from Drosophila,

highlight the importance of a reorganization or changes in sta-

bility of the MT cytoskeleton to permit and/or drive morphoge-

netic processes: during dorsal closure, the MT cytoskeleton

forms an apical parallel array important for zippering (Jankovics

and Brunner, 2006); during cell flattening and elongation of the

early amnioserosa cells, the MT cytoskeleton undergoes a

perpendicular rotation to drive the observed ‘‘rotary cell elonga-

tion’’ (Pope and Harris, 2008); during formation of the tracheal

system, noncentrosomal microtubules are formed that are

important for the establishment of the correct branching pattern

(Brodu et al., 2010); and during morphogenetic furrow pro-

gression in the eye, imaginal disc MTs appear apically stabilized

(Corrigall et al., 2007). Thus, dynamic MT arrays susceptible to

reorganization appear to form an important basis of several

morphogenetic processes.

We show that the cytolinker Shot is the likely linker between

the longitudinal MT bundles and themedial actomyosin network.

When the relocalization of Shot to the medial apical domain dur-

ing stage 11 is reduced, placodal cells often fail to invaginate

properly, apical constriction is affected, andmedial F-actin (likely

together with medial myosin) is reduced. In its medial position,

Shot could provide a physical coupling between MT bundles

and apical actomyosin (MT bundle ends themselves show

dynamic behavior within the apical domain, similar to myosin),

but Shot could also recruit further factors crucial for actomyosin

network assembly and function. The nature of these remains to

be determined. The fact that the rearranged MT bundles show

acetylation marks near the apical surface, suggesting their stabi-

lization over time, also indicates that Shotmight provide a stable,

albeit not necessarily static, link between microtubule ends and

apical medial actin.

Apical constriction based onmedial myosin fluctuations is one

of several important mechanisms that seem to operate to ensure

proper tube invagination in the salivary glands, suggesting a

complex ‘‘belt-and-braces’’ arrangement. We have shown pre-

viously that a multicellular actomyosin cable at the boundary of
l F-actin (K) compared to controls (L). Phalloidin (labeling F-actin; red in K and L

reas magnified in inverse panels; dotted lines mark cells with no medial F-actin;

ctional and medial Shot (M) and actin (N; using phalloidin). Shown are mean ±

junctional Shot is p = 0.2932 and formedial Shot is p = 0.0114, and for junctional

, nonsignificant (see Table S1).

-Shot-EFGas2-expressing embryos (nanosGal4 and fkhGal4 control; M) and of

n-labeled cell boundaries. The white lines denote the border of the placode.

fkhGal4 and nanosGal4VP16) and control (nanosGal4VP16) placodes at late

s well as the cumulative percentage of cells relative to apical area size (inset:

t-EFGas2 expression, four placodes, and for the control, three placodes were

) = 339 and N(UAS-GFP-Shot-EFGas2 nanosGal4 & fkhGal4) = 348.
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the salivary gland placode is under tension during invagination

(Röper, 2012). This cable likely collaborates with medial actomy-

osin to provide a stabilizing tissue-sized ratchet. How all these

mechanisms are coordinated will be important to determine in

the future.

The MT cytoskeleton is emerging as a crucial player

in morphogenesis, both through previously characterized func-

tions such as regulation of adherens junction stability and the

positioning, delivery, and turnover of membrane components,

and now through a direct role in stabilizing the dynamic apical

medial actomyosin network. This network in turn is crucial

for the effective change in apical surface area and shape

and for tube formation. Further studies will reveal whether the

interplay between MTs and actomyosin revealed here is

conserved during other invagination processes in invertebrates

and vertebrates.

EXPERIMENTAL PROCEDURES

Fly Stocks and Husbandry

For a full list of fly stocks and crosses, see Supplemental Experimental

Procedures.

Embryo Immunofluorescence Labeling and Confocal and Live

Analysis

Embryos were fixed, stained, and imaged using standard procedures; for de-

tails, please refer to Supplemental Experimental Procedures.

Automated Cell Segmentation, Tracking, and Myosin Quantification

For the analysis of apical cell area and neighbor analysis, images of fixed em-

bryos of late stage 11 placodes (judged by the extent of tracheal development)

were labeledwith DE-cadherin to highlight cell membranes andwith dCrebA or

fkhGal4-driven GFP expression to mark salivary gland fate. For analyzing

cell-contraction rates and myosin fluctuations, nine wild-type and three

MT-depleted (Spastin) embryos labeled with sqhGFP and Gap43-Cherry

were imaged live for between 7 and 28 min within a 50 min window at mid to

late stage 11. Image stacks through apices of cells in the salivary placode

were taken for both channels approximately every 20 s at 1-mm-depth

intervals.

Cells were segmented in image stacks of fixed embryos, and cells were

tracked and medial myosin fluorescence was quantified in movies with cell-

tracking and analysis software as used previously (Blanchard et al., 2009,

2010; Butler et al., 2009; Gorfinkiel and Blanchard, 2011; Gorfinkiel et al.,

2009). Briefly, the shape of the curved placode surface was identified in

each z stack as a contiguous ‘‘blanket’’ spread over the cortical signal.

Quasi-2D images for cell tracking containing clear cell cortices were extracted

as a maximum-intensity projection of the 1- or 1.5-mm-thick layer of tissue

below the blanket. These images were segmented using an adaptive water-

shedding algorithm, and in parallel cells were linked in time. Manual correction

was used to perfect cell outlines for fixed embryos and to improve cell tracking

in movies where the GAP43-mCherry fluorescence was sometimes faint. We

imposed a coordinate system on each placode with the center of the pit at

the origin, with anterior distance from the pit to the left and ventral distance

down. Only cells of the salivary placode were used in subsequent analyses.

These were distinguished from dCrebA staining in fixed embryos and from

the cable surrounding the placode in the myosin channel of movies.

For the analyses of apical cell area in control versus MT-depleted fixed

embryos, the clustering of cells of similar sizes was calculated for every cell

within the placode as the average difference in apical area between a cell

and all of its neighbors.

For the comparison of contraction rates and medial myosin behavior be-

tween control and MT-depleted embryos, tracked cells were first subjected

to quality control. Cells were filtered using rules for inappropriate cell size, rela-

tive speed to neighbors, and rate of change in cell area. Incomplete cells at the

edges of the field of view and those with short lineages were also removed
574 Developmental Cell 29, 562–576, June 9, 2014 ª2014 The Autho
from further analysis. Instantaneous tissue strain rates were calculated as pre-

viously for the remaining valid cells (Blanchard et al., 2009). Average medial

myosin fluorescence intensity for each cell was calculated from the sqhGFP

channel and myosin fluctuation analysis was performed as before (Blanchard

et al., 2010), taking care to quantify myosin in themost apical layer(s) under the

placode surface. Detrended cell-radius and myosin fluorescence intensity

measures were calculated as the raw time seriesminus a smoothed time series

trend (using a boxcar smoothing window of 6 min, larger than the maximum

expected fluctuation cycle length).

Fluctuation analysis yielded cycle length, amplitude, and phase measures

for each full cycle (defined for myosin as trough to trough and for cell radius

as peak to peak). Periods of time for each cell that were not fluctuating were

identified where amplitude multiplied by frequency was below a threshold

that we established visually as being a good compromise between including

real periodic behavior and excluding nonperiodic noise. The threshold for

myosin fluctuation was 0.5, and 0.005 for cell-radius fluctuations. We then

calculated the proportion of tracked cell time for which cells exhibited either

myosin or cell-radius fluctuations.

Quantification of Colocalization and Fluorescence Intensity

Colocalization analysis and fluorescence intensity quantifications were per-

formed using standard procedures. For details, please refer to Supplemental

Experimental Procedures.

Statistical Analysis

Significance was determined using two-tailed Student’s t test, Kolmogorov-

Smirnov test, or G test of independence. Results were considered significant

when p < 0.05. Specific tests, test statistics, degrees of freedom, and p values

can be found in Table S1.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, one table, and seven movies and can be found with this article

online at http://dx.doi.org/10.1016/j.devcel.2014.03.023.
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