54 research outputs found

    Hidden Hunger: Solutions for America’s Aging Populations

    Get PDF
    The global population, including the United States, is experiencing a demographic shift with the proportion of older adults (aged ≥ 65 years) growing faster than any other age group. This demographic group is at higher risk for developing nutrition-related chronic conditions such as heart disease and diabetes as well as infections such as influenza and pneumonia. As a result, an emphasis on nutrition is instrumental for disease risk reduction. Unfortunately, inadequate nutrient status or deficiency, often termed hidden hunger, disproportionately affects older adults because of systematic healthcare, environmental, and biological challenges. This report summarizes the unique nutrition challenges facing the aging population and identifies strategies, interventions, and policies to address hidden hunger among the older adults, discussed at the scientific symposium “Hidden Hunger: Solutions for America’s Aging Population”, on March 23, 2018

    KELT-17b: A Hot-Jupiter Transiting An A-Star In A Misaligned Orbit Detected With Doppler Tomography

    Get PDF
    We present the discovery of a hot Jupiter transiting the V = 9.23 mag main-sequence A-star KELT-17 (BD+14 1881). KELT-17b is a 1.310.29+0.28MJ{1.31}_{-0.29}^{+0.28}\,{M}_{{\rm{J}}}, 1.5250.060+0.065RJ{1.525}_{-0.060}^{+0.065}\,{R}_{{\rm{J}}} hot-Jupiter in a 3.08-day period orbit misaligned at −115fdg9 ± 4fdg1 to the rotation axis of the star. The planet is confirmed via both the detection of the radial velocity orbit, and the Doppler tomographic detection of the shadow of the planet during two transits. The nature of the spin–orbit misaligned transit geometry allows us to place a constraint on the level of differential rotation in the host star; we find that KELT-17 is consistent with both rigid-body rotation and solar differential rotation rates (α<0.30\alpha \lt 0.30 at 2σ2\sigma significance). KELT-17 is only the fourth A-star with a confirmed transiting planet, and with a mass of 1.6350.061+0.066M{1.635}_{-0.061}^{+0.066}\,{M}_{\odot }, an effective temperature of 7454 ± 49 K, and a projected rotational velocity of vsinI=44.21.3+1.5kms1;v\sin {I}_{* }={44.2}_{-1.3}^{+1.5}\,\mathrm{km}\,{{\rm{s}}}^{-1}; it is among the most massive, hottest, and most rapidly rotating of known planet hosts

    Hidden Hunger:Solutions for America's Aging Populations

    Get PDF
    The global population, including the United States, is experiencing a demographic shift with the proportion of older adults (aged 65 years) growing faster than any other age group. This demographic group is at higher risk for developing nutrition-related chronic conditions such as heart disease and diabetes as well as infections such as influenza and pneumonia. As a result, an emphasis on nutrition is instrumental for disease risk reduction. Unfortunately, inadequate nutrient status or deficiency, often termed hidden hunger, disproportionately affects older adults because of systematic healthcare, environmental, and biological challenges. This report summarizes the unique nutrition challenges facing the aging population and identifies strategies, interventions, and policies to address hidden hunger among the older adults, discussed at the scientific symposium Hidden Hunger: Solutions for America's Aging Population, on March 23, 2018

    Comparative Genomic Analysis of Pathogenic and Probiotic Enterococcus faecalis Isolates, and Their Transcriptional Responses to Growth in Human Urine

    Get PDF
    Urinary tract infection (UTI) is the most common infection caused by enterococci, and Enterococcus faecalis accounts for the majority of enterococcal infections. Although a number of virulence related traits have been established, no comprehensive genomic or transcriptomic studies have been conducted to investigate how to distinguish pathogenic from non-pathogenic E. faecalis in their ability to cause UTI. In order to identify potential genetic traits or gene regulatory features that distinguish pathogenic from non-pathogenic E. faecalis with respect to UTI, we have performed comparative genomic analysis, and investigated growth capacity and transcriptome profiling in human urine in vitro. Six strains of different origins were cultivated and all grew readily in human urine. The three strains chosen for transcriptional analysis showed an overall similar response with respect to energy and nitrogen metabolism, stress mechanism, cell envelope modifications, and trace metal acquisition. Our results suggest that citrate and aspartate are significant for growth of E. faecalis in human urine, and manganese appear to be a limiting factor. The majority of virulence factors were either not differentially regulated or down-regulated. Notably, a significant up-regulation of genes involved in biofilm formation was observed. Strains from different origins have similar capacity to grow in human urine. The overall similar transcriptional responses between the two pathogenic and the probiotic strain suggest that the pathogenic potential of a certain E. faecalis strain may to a great extent be determined by presence of fitness and virulence factors, rather than the level of expression of such traits

    Genetic engineering of Lactococcus lactis co-producing antigen and the mucosal adjuvant 3′ 5′- cyclic di adenosine monophosphate (c-di-AMP) as a design strategy to develop a mucosal vaccine prototype

    Get PDF
    Lactococcus lactis is a promising candidate for the development of mucosal vaccines. More than 20 years of experimental research supports this immunization approach. In addition, 30 5 0 - cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that plays a key role in the regulation of diverse physiological functions (potassium and cellular wall homeostasis, among others). Moreover, recent studies showed that c-di-AMP has a strong mucosal adjuvant activity that promotes both humoral and cellular immune responses. In this study, we report the development of a novel mucosal vaccine prototype based on a genetically engineered L. lactis strain. First, we demonstrate that homologous expression of cdaA gen in L. lactis is able to increase c-di-AMP levels. Thus, we hypothesized that in vivo synthesis of the adjuvant can be combined with production of an antigen of interest in a separate form or jointly in the same strain. Therefore, a specifically designed fragment of the trans-sialidase (TScf) enzyme from the Trypanosoma cruzi parasite, the etiological agent of Chagas disease, was selected to evaluate as proof of concept the immune response triggered by our vaccine prototypes. Consequently, we found that oral administration of a L. lactis strain expressing antigenic TScf combined with another L. lactis strain producing the adjuvant c-di-AMP could elicit a TS-specific immune response. Also, an additional L. lactis strain containing a single plasmid with both cdaA and tscf genes under the Pcit and Pnis promoters, respectively, was also able to elicit a specific immune response. Thus, the current report is the first one to describe an engineered L. lactis strain that simultaneously synthesizes the adjuvant c-di-AMP as well as a heterologous antigen in order to develop a simple and economical system for the formulation of vaccine prototypes using a food grade lactic acid bacterium.Para citar este articulo: Quintana I, Espariz M, Villar SR, González FB, Pacini MF, Cabrera G, Bontempi I, Prochetto E, Stülke J, Perez AR, Marcipar I, Blancato V and Magni C (2018) Genetic Engineering of Lactococcus lactis Co-producing Antigen and the Mucosal Adjuvant 30 5 0 - cyclic di Adenosine Monophosphate (c-di-AMP) as a Design Strategy to Develop a Mucosal Vaccine Prototype. Front. Microbiol. 9:2100. doi: 10.3389/fmicb.2018.02100Fil: Quintana, Ingrid M. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR -CONICET). Laboratorio de Fisiología y Genética de Bacterias Lácticas; Argentina.Fil: Quintana, Ingrid M. Georg-August-Universität Göttingen. Göttinger Zentrum für Molekulare Biowissenschaften (GZMB). Department of General Microbiology; Germany.Fil: Espariz, Martín. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR -CONICET). Laboratorio de Fisiología y Genética de Bacterias Lácticas; Argentina.Fil: Espariz, Martín. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Laboratorio de Biotecnología e Inocuidad de los Alimentos; Argentina.Fil: Villar, Silvina Raquel. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Inmunología Clínica y Experimental de Rosario (IDICER – CONICET); Argentina.Fil: Villar, Silvina Raquel. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Centro de Investigación y Producción de Reactivos Biológicos; Argentina.Fil: González, Florencia Belén. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Inmunología Clínica y Experimental de Rosario (IDICER – CONICET); Argentina.Fil: Pacini, Maria F. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Inmunología Clínica y Experimental de Rosario (IDICER – CONICET); Argentina.Fil: Cabrera, Gabriel. Universidad Nacional del Litoral. Laboratorio de Tecnología Inmunológica; Argentina.Fil: Cabrera, Gabriel. Universidad Nacional del Litoral. Facultad de Ciencias Médicas; Argentina.Fil: Bontempi, Iván. Universidad Nacional del Litoral. Laboratorio de Tecnología Inmunológica; Argentina.Fil: Bontempi, Iván. Universidad Nacional del Litoral. Facultad de Ciencias Médicas; Argentina.Fil: Prochetto, Estefanía. Universidad Nacional del Litoral. Laboratorio de Tecnología Inmunológica; Argentina.Fil: Stülke, Jörg. Georg-August-Universität Göttingen. Göttinger Zentrum für Molekulare Biowissenschaften (GZMB). Department of General Microbiology; Germany.Fil: Perez, Ana R. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Inmunología Clínica y Experimental de Rosario (IDICER – CONICET); Argentina.Fil: Perez, Ana R. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Centro de Investigación y Producción de Reactivos Biológicos; Argentina.Fil: Marcipar, Iván. Universidad Nacional del Litoral. Laboratorio de Tecnología Inmunológica; Argentina.Fil: Marcipar, Iván. Universidad Nacional del Litoral. Facultad de Ciencias Médicas; Argentina.Fil: Blancato, Victor. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR -CONICET). Laboratorio de Fisiología y Genética de Bacterias Lácticas; Argentina.Fil: Blancato, Victor. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Laboratorio de Biotecnología e Inocuidad de los Alimentos; Argentina.Fil: Magni, Christian. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR -CONICET). Laboratorio de Fisiología y Genética de Bacterias Lácticas; Argentina.Fil: Magni, Christian. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Laboratorio de Biotecnología e Inocuidad de los Alimentos; Argentina
    corecore