116 research outputs found

    Design and fabrication of heart muscle using scaffold-based tissue engineering

    Full text link
    Cardiac tissue engineering strategies are based on the development of functional models of heart muscle in vitro . Our research is focused on evaluating the feasibility of different tissue engineering platforms to support the formation of heart muscle. Our previous work was focused on developing three-dimensional (3D) models of heart muscle using self-organization strategies and biodegradable hydrogels. To build on this work, our current study describes a third tissue engineering platform using polymer-based scaffolding technology to engineer functional heart muscle in vitro . Porous scaffolds were fabricated by solubilizing chitosan in dilute glacial acetic acid, transferring the solution to a mold, freezing the mold at −80°C followed by overnight lyophilization. The scaffolds were rehydrated in sodium hydroxide to neutralize the pH, sterilized in 70% ethanol and cellularized using primary cardiac myocytes. Several variables were studied: effect of polymer concentration and chitosan solution volume (i.e., scaffold thickness) on scaffold fabrication, effect of cell number and time in culture on active force generated by cardiomyocyte-seeded scaffolds and the effect of lysozyme on scaffold degradation. Histology (hematoxylin and eosin) and contractility (active, baseline and specific force, electrical pacing) were evaluated for the cellularized constructs under different conditions. We found that a polymer concentration in the range 1.0–2.5% (w/v) was most suitable for scaffold fabrication while a scaffold thickness of 200 Μm was optimal for cardiac cell functionality. Direct injection of the cells on the scaffold did not result in contractile constructs due to low cell retention. Fibrin gel was required to retain the cells within the constructs and resulted in the formation of contractile constructs. We found that lower cell seeding densities, in the range of 1–2 million cells, resulted in the formation of contractile heart muscle, termed s mart m aterial i ntegrated h eart m uscle (SMIHMs). Chitosan concentration of 1–2% (w/v) did not have a significant effect on the active twitch force of SMIHMs. We found that scaffold thickness was an important variable and only the thinnest scaffolds evaluated (200 Μm) generated any measurable active twitch force upon electrical stimulation. The maximum active force for SMIHMs was found to be 439.5 ΜN while the maximum baseline force was found to be 2850 ΜN, obtained after 11 days in culture. Histological evaluation showed a fairly uniform cell distribution throughout the thickness of the scaffold. We found that lysozyme concentration had a profound effect on scaffold degradation with complete scaffold degradation being achieved in 2 h using a lysozyme concentration of 1 mg/mL. Slower degradation times (in the order of weeks) were achieved by decreasing the lysozyme concentration to 0.01 mg/mL. In this study, we provide a detailed description for the formation of contractile 3D heart muscle utilizing scaffold-based methods. We demonstrate the effect of several variables on the formation and culture of SMIHMs. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58652/1/31642_ftp.pd

    Nitric Oxide and Infection: Another View

    Get PDF
    Nitric oxide (NO) has been nicknamed "murderer” and "mediator” because it has toxic and signaling properties. We review these two aspects of NO synthesis from the perspective of the clinical infectious disease specialist by considering the potential of NO as an endothelium-derived relaxing factor (EDRF) in inflammation and sepsis and its potential as an antimicrobial system. We deviate from observations in recent authoritative reviews and point to important speciesdifferences that make it unlikely that NO serves as an EDRF mediating inflammatory vasodilatation in humans or that NO synthesized by human phagocytes has an antimicrobial function.We propose that in humans, NOsynthesis is moreconfined and compartmentalized than in certain other animal species, and therefore, unwelcome toxicity, vasodilatation, or disturbance of paracrine signaling mechanisms (i.e., modulation of phagocytic cell functions) are avoided during inflammatio

    RELACIÓN TERAPÉUTICA: EL PILAR DE LA PROFESIÓN ENFERMERA

    Get PDF
    This revision presents a global vision about the therapeutic relationship and its importance for nursing professionals. With this, we will show the importance of the acquisition of skills and attitudes for initiating the therapeutic relationship. One of the most important characteristic of nursing is the concept of care which is the essence of this profession. Among the most important needs, we found the need to establish a correct therapeutic relationship. If nursing students are coached in these skills, we will be able to achieve better prepared professionals, who have a holistic vision of the patient, they offering an integral attention to the patient. This is a demand to our current society, which assures the improvement of individual healthEn esta revisión se presenta una visión global de la relación terapéutica y su relevancia en la profesión enfermera. A través de ésta, se quiere demostrar la importancia de la adquisición de habilidades y actitudes fundamentales a la hora de iniciar una relación de ayuda. Una de las características de la enfermería es el concepto del cuidado a través del cual damos significado a la profesión. Entre las necesidades de los cuidados encontramos la más importante de ellas que es la necesidad de establecer una correcta relación terapéutica.   Si los estudiantes de enfermería están entrenados en estas habilidades, conseguiremos profesionales mejores preparados, que contemplarán a las personas en su globalidad, proporcionando una atención integral. Ésta es una demanda de la sociedad actual, la cual conllevaría a una mejora de la salud individual.  

    La proteína AOX como terapia génica para enfermedades mitocondriales

    Get PDF
    La proteína AOX como terapia génica para enfermedades mitocondriales. Las mitocondrias son orgánulos subcelulares cuya función principal es la generación de ATP a través del sistema de fosforilación oxidativa OXPHOS; sin embargo, éste no es el único papel de las mitocondrias, ya que participan en numerosas rutas metabólicas, intervienen en procesos intracelulares y generan la mayor parte de las especies reactivas de oxígeno (ROS). Las enfermedades causadas por defectos en los genes del sistema OXPHOS, están catalogadas como enfermedades raras y actualmente no existen tratamientos eficaces para tratar estas enfermedades, por lo que entre los posibles tratamientos que se están investigando está el uso de terapia génica para tratar las enfermedades mitocondriales. El grupo GENOXPHOS, en el cual he realizado el proyecto Máster, ha desarrollado un modelo de ratón knock-in para la proteína AOX, bajo la influencia del promotor Rosa26 que hace que su expresión sea constitutiva y ubicua. Dicha proteína está presente en plantas y algunos eucariotas inferiores pero ausente en mamíferos y su expresión es capaz de revertir en células en cultivo un fenotipo defectuoso causado por fallos OXPHOS, por lo que su expresión en modelos animales con mutaciones en los complejos III y IV de la cadena de transporte electrónico mitocondrial podría paliar los efectos fenotípicos de la mutación en los descendientes. En este proyecto se ha propuesto completar el análisis de los ratones knock-in y ensayar in vivo la terapia génica basada en la xenoexpresión y se ha demostrado que dicha proteína, se puede expresar en células de mamíferos, se dirige a la mitocondria y además es funcional. Estos resultados nos llevan a pensar que AOX puede tener una posible utilidad terapéutica en las enfermedades mitocondriales

    In vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells

    Full text link
    [EN] Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using combination of biomaterials, cells and bioactive molecules. The goal of the present study was to evaluate cell survival and growth, seeding capacity and cellular phenotype maintenance of subcutaneous adipose tissue-derived progenitor cells in a new synthetic biomaterial scaffold platform. Specifically, here we tested the effect of the RAD16-I peptide gel in microporous poly(ethyl acrylate) polymers using two-dimensional PEA films as controls. Results showed optimal cell adhesion efficiency and growth in the polymers coated with the self-assembling peptide RAD16-I. Importantly, subATDPCs seeded into microporous PEA scaffolds coated with RAD16-I maintained its phenotype and were able to migrate outwards the bioactive patch, hopefully toward the infarcted area once implanted. These data suggest that this bioimplant (scaffold/RAD16-I/cells) can be suitable for further in vivo implantation with the aim to improve the function of affected tissue after myocardial infarction. (c) 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3419-3430, 2015.Contract grant sponsor: European Union Seventh Framework Programme; contract grant number: 229239Castells-Sala, C.; Martínez Ramos, C.; Vallés Lluch, A.; Monleón Pradas, M.; Semino, C. (2015). In vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells. Journal of Biomedical Materials Research Part A. 103(11):3419-3430. https://doi.org/10.1002/jbm.a.35482S3419343010311Persidis, A. (1999). Tissue engineering. Nature Biotechnology, 17(5), 508-510. doi:10.1038/8700Venugopal, J. R., Prabhakaran, M. P., Mukherjee, S., Ravichandran, R., Dan, K., & Ramakrishna, S. (2011). Biomaterial strategies for alleviation of myocardial infarction. Journal of The Royal Society Interface, 9(66), 1-19. doi:10.1098/rsif.2011.0301Castells-Sala, C., & Semino, C. E. (2012). Biomaterials for stem cell culture and seeding for the generation and delivery of cardiac myocytes. Current Opinion in Organ Transplantation, 17(6), 681-687. doi:10.1097/mot.0b013e32835a34a6Nunes, S. S., Song, H., Chiang, C. K., & Radisic, M. (2011). Stem Cell-Based Cardiac Tissue Engineering. Journal of Cardiovascular Translational Research, 4(5), 592-602. doi:10.1007/s12265-011-9307-xFernandes, S., Kuklok, S., McGonigle, J., Reinecke, H., & Murry, C. E. (2012). Synthetic Matrices to Serve as Niches for Muscle Cell Transplantation. Cells Tissues Organs, 195(1-2), 48-59. doi:10.1159/000331414Murry, C. E., Field, L. J., & Menasché, P. (2005). Cell-Based Cardiac Repair. Circulation, 112(20), 3174-3183. doi:10.1161/circulationaha.105.546218Wang, F., & Guan, J. (2010). Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy☆. Advanced Drug Delivery Reviews, 62(7-8), 784-797. doi:10.1016/j.addr.2010.03.001Patel, A. N., & Genovese, J. A. (2007). Stem cell therapy for the treatment of heart failure. Current Opinion in Cardiology, 22(5), 464-470. doi:10.1097/hco.0b013e3282c3cb2aPendyala, L., Goodchild, T., Gadesam, R., Chen, J., Robinson, K., Chronos, N., & Hou, D. (2008). Cellular Cardiomyoplasty and Cardiac Regeneration. Current Cardiology Reviews, 4(2), 72-80. doi:10.2174/157340308784245748Li, Z., Guo, X., & Guan, J. (2012). A Thermosensitive Hydrogel Capable of Releasing bFGF for Enhanced Differentiation of Mesenchymal Stem Cell into Cardiomyocyte-like Cells under Ischemic Conditions. Biomacromolecules, 13(6), 1956-1964. doi:10.1021/bm300574jHuang, C.-C., Wei, H.-J., Yeh, Y.-C., Wang, J.-J., Lin, W.-W., Lee, T.-Y., … Sung, H.-W. (2012). Injectable PLGA porous beads cellularized by hAFSCs for cellular cardiomyoplasty. Biomaterials, 33(16), 4069-4077. doi:10.1016/j.biomaterials.2012.02.024Liu, Z., Wang, H., Wang, Y., Lin, Q., Yao, A., Cao, F., … Wang, C. (2012). The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials, 33(11), 3093-3106. doi:10.1016/j.biomaterials.2011.12.044Kadner, K., Dobner, S., Franz, T., Bezuidenhout, D., Sirry, M. S., Zilla, P., & Davies, N. H. (2012). The beneficial effects of deferred delivery on the efficiency of hydrogel therapy post myocardial infarction. Biomaterials, 33(7), 2060-2066. doi:10.1016/j.biomaterials.2011.11.031Naderi, H., Matin, M. M., & Bahrami, A. R. (2011). Review paper: Critical Issues in Tissue Engineering: Biomaterials, Cell Sources, Angiogenesis, and Drug Delivery Systems. Journal of Biomaterials Applications, 26(4), 383-417. doi:10.1177/0885328211408946Ptaszek, L. M., Mansour, M., Ruskin, J. N., & Chien, K. R. (2012). Towards regenerative therapy for cardiac disease. The Lancet, 379(9819), 933-942. doi:10.1016/s0140-6736(12)60075-0Song, H., Yoon, C., Kattman, S. J., Dengler, J., Massé, S., Thavaratnam, T., … Zandstra, P. W. (2009). Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proceedings of the National Academy of Sciences, 107(8), 3329-3334. doi:10.1073/pnas.0905729106Liu, J., Zhang, Z., Liu, Y., Guo, C., Gong, Y., Yang, S., … He, Z. (2012). Generation, Characterization, and Potential Therapeutic Applications of Cardiomyocytes from Various Stem Cells. Stem Cells and Development, 21(12), 2095-2110. doi:10.1089/scd.2012.0031Abdelli, L. S., Merino, H., Rocher, C. M., & Singla, D. K. (2012). Cell therapy in the heart. Canadian Journal of Physiology and Pharmacology, 90(3), 307-315. doi:10.1139/y11-130Hoover-Plow, J., & Gong, Y. (2012). Challenges for heart disease stem cell therapy. Vascular Health and Risk Management, 99. doi:10.2147/vhrm.s25665Chachques, J. C., Trainini, J. C., Lago, N., Cortes-Morichetti, M., Schussler, O., & Carpentier, A. (2008). Myocardial Assistance by Grafting a New Bioartificial Upgraded Myocardium (MAGNUM Trial): Clinical Feasibility Study. The Annals of Thoracic Surgery, 85(3), 901-908. doi:10.1016/j.athoracsur.2007.10.052Karam, J.-P., Muscari, C., & Montero-Menei, C. N. (2012). Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium. Biomaterials, 33(23), 5683-5695. doi:10.1016/j.biomaterials.2012.04.028Clifford, D. M., Fisher, S. A., Brunskill, S. J., Doree, C., Mathur, A., Clarke, M. J., … Martin-Rendon, E. (2012). Long-Term Effects of Autologous Bone Marrow Stem Cell Treatment in Acute Myocardial Infarction: Factors That May Influence Outcomes. PLoS ONE, 7(5), e37373. doi:10.1371/journal.pone.0037373Lee, R. H., Kim, B., Choi, I., Kim, H., Choi, H. S., Suh, K., … Jung, J. S. (2004). Characterization and Expression Analysis of Mesenchymal Stem Cells from Human Bone Marrow and Adipose Tissue. Cellular Physiology and Biochemistry, 14(4-6), 311-324. doi:10.1159/000080341Qayyum, A. A., Haack-Sørensen, M., Mathiasen, A. B., Jørgensen, E., Ekblond, A., & Kastrup, J. (2012). Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. Regenerative Medicine, 7(3), 421-428. doi:10.2217/rme.12.17Bai, X., Ma, J., Pan, Z., Song, Y.-H., Freyberg, S., Yan, Y., … Alt, E. (2007). Electrophysiological properties of human adipose tissue-derived stem cells. American Journal of Physiology-Cell Physiology, 293(5), C1539-C1550. doi:10.1152/ajpcell.00089.2007Rigol, M., Solanes, N., Farré, J., Roura, S., Roqué, M., Berruezo, A., … Heras, M. (2010). Effects of Adipose Tissue-Derived Stem Cell Therapy After Myocardial Infarction: Impact of the Route of Administration. Journal of Cardiac Failure, 16(4), 357-366. doi:10.1016/j.cardfail.2009.12.006Planat-Bénard, V., Menard, C., André, M., Puceat, M., Perez, A., Garcia-Verdugo, J.-M., … Casteilla, L. (2004). Spontaneous Cardiomyocyte Differentiation From Adipose Tissue Stroma Cells. Circulation Research, 94(2), 223-229. doi:10.1161/01.res.0000109792.43271.47Weber, B., Zeisberger, S. M., & Hoerstrup, S. P. (2011). Prenatally harvested cells for cardiovascular tissue engineering: Fabrication of autologous implants prior to birth. Placenta, 32, S316-S319. doi:10.1016/j.placenta.2011.04.001Cortes-Morichetti, M., Frati, G., Schussler, O., Van Huyen, J.-P. D., Lauret, E., Genovese, J. A., … Chachques, J. C. (2007). Association Between a Cell-Seeded Collagen Matrix and Cellular Cardiomyoplasty for Myocardial Support and Regeneration. Tissue Engineering, 13(11), 2681-2687. doi:10.1089/ten.2006.0447Chi, N.-H., Yang, M.-C., Chung, T.-W., Chen, J.-Y., Chou, N.-K., & Wang, S.-S. (2012). Cardiac repair achieved by bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid patches in a rat of myocardial infarction model. Biomaterials, 33(22), 5541-5551. doi:10.1016/j.biomaterials.2012.04.030Wang, T., Jiang, X.-J., Tang, Q.-Z., Li, X.-Y., Lin, T., Wu, D.-Q., … Okello, E. (2009). Bone marrow stem cells implantation with α-cyclodextrin/MPEG–PCL–MPEG hydrogel improves cardiac function after myocardial infarction. Acta Biomaterialia, 5(8), 2939-2944. doi:10.1016/j.actbio.2009.04.040Wu, J., Zeng, F., Huang, X.-P., Chung, J. C.-Y., Konecny, F., Weisel, R. D., & Li, R.-K. (2011). Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials, 32(2), 579-586. doi:10.1016/j.biomaterials.2010.08.098Vunjak-Novakovic, G., Lui, K. O., Tandon, N., & Chien, K. R. (2011). Bioengineering Heart Muscle: A Paradigm for Regenerative Medicine. Annual Review of Biomedical Engineering, 13(1), 245-267. doi:10.1146/annurev-bioeng-071910-124701Dobner, S., Bezuidenhout, D., Govender, P., Zilla, P., & Davies, N. (2009). A Synthetic Non-degradable Polyethylene Glycol Hydrogel Retards Adverse Post-infarct Left Ventricular Remodeling. Journal of Cardiac Failure, 15(7), 629-636. doi:10.1016/j.cardfail.2009.03.003Blan, N. R., & Birla, R. K. (2008). Design and fabrication of heart muscle using scaffold-based tissue engineering. Journal of Biomedical Materials Research Part A, 86A(1), 195-208. doi:10.1002/jbm.a.31642Zhao, X., & Zhang, S. (s. f.). Self-Assembling Nanopeptides Become a New Type of Biomaterial. Advances in Polymer Science, 145-170. doi:10.1007/12_088Vallés-Lluch, A., Arnal-Pastor, M., Martínez-Ramos, C., Vilariño-Feltrer, G., Vikingsson, L., Castells-Sala, C., … Monleón Pradas, M. (2013). Combining self-assembling peptide gels with three-dimensional elastomer scaffolds. Acta Biomaterialia, 9(12), 9451-9460. doi:10.1016/j.actbio.2013.07.038Arnal-Pastor, M., Vallés-Lluch, A., Keicher, M., & Pradas, M. M. (2011). Coating typologies and constrained swelling of hyaluronic acid gels within scaffold pores. Journal of Colloid and Interface Science, 361(1), 361-369. doi:10.1016/j.jcis.2011.05.013Pérez Olmedilla, M., Garcia-Giralt, N., Pradas, M. M., Ruiz, P. B., Gómez Ribelles, J. L., Palou, E. C., & García, J. C. M. (2006). Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials, 27(7), 1003-1012. doi:10.1016/j.biomaterials.2005.07.030Soria, J. M., Martínez Ramos, C., Salmerón Sánchez, M., Benavent, V., Campillo Fernández, A., Gómez Ribelles, J. L., … Barcia, J. A. (2006). Survival and differentiation of embryonic neural explants on different biomaterials. Journal of Biomedical Materials Research Part A, 79A(3), 495-502. doi:10.1002/jbm.a.30803Campillo-Fernandez, A. J., Pastor, S., Abad-Collado, M., Bataille, L., Gomez-Ribelles, J. L., Meseguer-Dueñas, J. M., … Ruiz-Moreno, J. M. (2007). Future Design of a New Keratoprosthesis. Physical and Biological Analysis of Polymeric Substrates for Epithelial Cell Growth. Biomacromolecules, 8(8), 2429-2436. doi:10.1021/bm0703012Martínez-Ramos, C., Vallés-Lluch, A., Verdugo, J. M. G., Ribelles, J. L. G., Barcia Albacar, J. A., Orts, A. B., … Pradas, M. M. (2012). Channeled scaffolds implanted in adult rat brain. Journal of Biomedical Materials Research Part A, 100A(12), 3276-3286. doi:10.1002/jbm.a.34273Hernández, J. C. R., Salmerón Sánchez, M., Soria, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2007). Substrate Chemistry-Dependent Conformations of Single Laminin Molecules on Polymer Surfaces are Revealed by the Phase Signal of Atomic Force Microscopy. Biophysical Journal, 93(1), 202-207. doi:10.1529/biophysj.106.102491Kisiday, J., Jin, M., Kurz, B., Hung, H., Semino, C., Zhang, S., & Grodzinsky, A. J. (2002). Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair. Proceedings of the National Academy of Sciences, 99(15), 9996-10001. doi:10.1073/pnas.142309999Semino, C. E., Merok, J. R., Crane, G. G., Panagiotakos, G., & Zhang, S. (2003). Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation, 71(4-5), 262-270. doi:10.1046/j.1432-0436.2003.7104503.xNarmoneva, D. A., Vukmirovic, R., Davis, M. E., Kamm, R. D., & Lee, R. T. (2004). Endothelial Cells Promote Cardiac Myocyte Survival and Spatial Reorganization. Circulation, 110(8), 962-968. doi:10.1161/01.cir.0000140667.37070.07Genové, E., Shen, C., Zhang, S., & Semino, C. E. (2005). The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials, 26(16), 3341-3351. doi:10.1016/j.biomaterials.2004.08.012Ellis-Behnke, R. G., Liang, Y.-X., You, S.-W., Tay, D. K. C., Zhang, S., So, K.-F., & Schneider, G. E. (2006). Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proceedings of the National Academy of Sciences, 103(13), 5054-5059. doi:10.1073/pnas.0600559103Garreta, E., Genové, E., Borrós,, S., & Semino, C. E. (2006). Osteogenic Differentiation of Mouse Embryonic Stem Cells and Mouse Embryonic Fibroblasts in a Three-Dimensional Self-Assembling Peptide Scaffold. Tissue Engineering, 12(8), 2215-2227. doi:10.1089/ten.2006.12.2215Martínez-Ramos, C., Rodríguez-Pérez, E., Garnes, M. P., Chachques, J. C., Moratal, D., Vallés-Lluch, A., & Monleón Pradas, M. (2014). Design and Assembly Procedures for Large-Sized Biohybrid Scaffolds as Patches for Myocardial Infarct. Tissue Engineering Part C: Methods, 20(10), 817-827. doi:10.1089/ten.tec.2013.0489Diego, R. B., Olmedilla, M. P., Aroca, A. S., Ribelles, J. L. G., Pradas, M. M., Ferrer, G. G., & Sánchez, M. S. (2005). Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. Journal of Materials Science: Materials in Medicine, 16(8), 693-698. doi:10.1007/s10856-005-2604-7Diego, R. B., Estellés, J. M., Sanz, J. A., García-Aznar, J. M., & Sánchez, M. S. (2007). Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: Fabrication, mechanical properties, and finite element modeling. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 81B(2), 448-455. doi:10.1002/jbm.b.30683Bayes-Genis, A., Soler-Botija, C., Farré, J., Sepúlveda, P., Raya, A., Roura, S., … Belmonte, J. C. I. (2010). Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents. Journal of Molecular and Cellular Cardiology, 49(5), 771-780. doi:10.1016/j.yjmcc.2010.08.010MARTINEZESTRADA, O., MUNOZSANTOS, Y., JULVE, J., REINA, M., & VILARO, S. (2005). Human adipose tissue as a source of Flk-1 cells: new method of differentiation and expansion. Cardiovascular Research, 65(2), 328-333. doi:10.1016/j.cardiores.2004.11.015Cyganek, L. (2013). Cardiac Progenitor Cells and their Therapeutic Application for Cardiac Repair. Journal of Clinical & Experimental Cardiology, 01(S11). doi:10.4172/2155-9880.s11-008Wang, C., Cao, D., Wang, Q., & Wang, D.-Z. (2011). Synergistic Activation of Cardiac Genes by Myocardin and Tbx5. PLoS ONE, 6(8), e24242. doi:10.1371/journal.pone.0024242Wilson-Rawls, J., Molkentin, J. D., Black, B. L., & Olson, E. N. (1999). Activated Notch Inhibits Myogenic Activity of the MADS-Box Transcription Factor Myocyte Enhancer Factor 2C. Molecular and Cellular Biology, 19(4), 2853-2862. doi:10.1128/mcb.19.4.2853Lockhart, M. M., Wirrig, E. E., Phelps, A. L., Ghatnekar, A. V., Barth, J. L., Norris, R. A., & Wessels, A. (2013). Mef2c Regulates Transcription of the Extracellular Matrix Protein Cartilage Link Protein 1 in the Developing Murine Heart. PLoS ONE, 8(2), e57073. doi:10.1371/journal.pone.0057073Jiang, W., Ma, A., Wang, T., Han, K., Liu, Y., Zhang, Y., … Zheng, X. (2006). Homing and differentiation of mesenchymal stem cells delivered intravenously to ischemic myocardium in vivo: a time-series study. Pflügers Archiv - European Journal of Physiology, 453(1), 43-52. doi:10.1007/s00424-006-0117-yPrabhakaran, M. P., Venugopal, J., Kai, D., & Ramakrishna, S. (2011). Biomimetic material strategies for cardiac tissue engineering. Materials Science and Engineering: C, 31(3), 503-513. doi:10.1016/j.msec.2010.12.017Xu, B., Li, Y., Fang, X., Thouas, G. A., Cook, W. D., Newgreen, D. F., & Chen, Q. (2013). Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes. Journal of the Mechanical Behavior of Biomedical Materials, 28, 354-365. doi:10.1016/j.jmbbm.2013.06.005Zhou, J., Shu, Y., Lü, S.-H., Li, J.-J., Sun, H.-Y., Tang, R.-Y., … Wang, C.-Y. (2013). The Spatiotemporal Development of Intercalated Disk in Three-Dimensional Engineered Heart Tissues Based on Collagen/Matrigel Matrix. PLoS ONE, 8(11), e81420. doi:10.1371/journal.pone.0081420Zhang, S., Gelain, F., & Zhao, X. (2005). Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Seminars in Cancer Biology, 15(5), 413-420. doi:10.1016/j.semcancer.2005.05.007Santos, E., Hernández, R. M., Pedraz, J. L., & Orive, G. (2012). Novel advances in the design of three-dimensional bio-scaffolds to control cell fate: translation from 2D to 3D. Trends in Biotechnology, 30(6), 331-341. doi:10.1016/j.tibtech.2012.03.005Dégano, I. R., Quintana, L., Vilalta, M., Horna, D., Rubio, N., Borrós, S., … Blanco, J. (2009). The effect of self-assembling peptide nanofiber scaffolds on mouse embryonic fibroblast implantation and proliferation. Biomaterials, 30(6), 1156-1165. doi:10.1016/j.biomaterials.2008.11.021Kanno, S., & Saffitz, J. E. (2001). The role of myocardial gap junctions in electrical conduction and arrhythmogenesis. Cardiovascular Pathology, 10(4), 169-177. doi:10.1016/s1054-8807(01)00078-3Center CHG 1996Messner, B., Baum, H., Fischer, P., Quasthoff, S., & Neumeier, D. (2000). Expression of Messenger RNA of the Cardiac Isoforms of Troponin T and I in Myopathic Skeletal Muscle. American Journal of Clinical Pathology, 114(4), 544-549. doi:10.1309/8kcl-uqrf-6eel-36xkGnecchi, M., Danieli, P., & Cervio, E. (2012). Mesenchymal stem cell therapy for heart disease. Vascular Pharmacology, 57(1), 48-55. doi:10.1016/j.vph.2012.04.00
    corecore