344 research outputs found

    Controlling the superconducting transition by spin-orbit coupling

    Get PDF
    Whereas there exists considerable evidence for the conversion of singlet Cooper pairs into triplet Cooper pairs in the presence of inhomogeneous magnetic fields, recent theoretical proposals have suggested an alternative way to exert control over triplet generation: intrinsic spin-orbit coupling in a homogeneous ferromagnet coupled to a superconductor. Here, we proximity-couple Nb to an asymmetric Pt/Co/Pt trilayer, which acts as an effective spin-orbit coupled ferromagnet owing to structural inversion asymmetry. Unconventional modulation of the superconducting critical temperature as a function of in-plane and out-of- plane applied magnetic fields suggests the presence of triplets that can be controlled by the magnetic orientation of a single homogeneous ferromagnet. Our studies demonstrate for the first time an active role of spin-orbit coupling in controlling the triplets -- an important step towards the realization of novel superconducting spintronic devices.Comment: 11 pages + 4 figures + supplemental informatio

    Critical current of a Josephson junction containing a conical magnet

    Full text link
    We calculate the critical current of a superconductor/ferromagnetic/superconductor (S/FM/S) Josephson junction in which the FM layer has a conical magnetic structure composed of an in-plane rotating antiferromagnetic phase and an out-of-plane ferromagnetic component. In view of the realistic electronic properties and magnetic structures that can be formed when conical magnets such as Ho are grown with a polycrystalline structure in thin-film form by methods such as direct current sputtering and evaporation, we have modeled this situation in the dirty limit with a large magnetic coherence length (ξf\xi_f). This means that the electron mean free path is much smaller than the normalized spiral length λ/2π\lambda/2\pi which in turn is much smaller than ξf\xi_f (with λ\lambda as the length a complete spiral makes along the growth direction of the FM). In this physically reasonable limit we have employed the linearized Usadel equations: we find that the triplet correlations are short ranged and manifested in the critical current as a rapid oscillation on the scale of λ/2π\lambda/2\pi. These rapid oscillations in the critical current are superimposed on a slower oscillation which is related to the singlet correlations. Both oscillations decay on the scale of ξf\xi_f. We derive an analytical solution and also describe a computational method for obtaining the critical current as a function of the conical magnetic layer thickness.Comment: Extended version of the published paper. Additional information about the computational method is included in the appendi

    Whole-brain patterns of 1H-magnetic resonance spectroscopy imaging in Alzheimer's disease and dementia with Lewy bodies

    Get PDF
    Acknowledgements We thank Craig Lambert for his help in processing the MRS data. The study was funded by the Sir Jules Thorn Charitable Trust (grant ref: 05/JTA) and was supported by the National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre and the Biomedical Research Unit in Lewy Body Dementia based at Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust and Newcastle University and the NIHR Biomedical Research Centre and Biomedical Research Unit in Dementia based at Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge.Peer reviewedPublisher PD

    Depairing critical current achieved in superconducting thin films with through-thickness arrays of artificial pinning centers

    Full text link
    Large area arrays of through-thickness nanoscale pores have been milled into superconducting Nb thin films via a process utilizing anodized aluminum oxide thin film templates. These pores act as artificial flux pinning centers, increasing the superconducting critical current, Jc, of the Nb films. By optimizing the process conditions including anodization time, pore size and milling time, Jc values approaching and in some cases matching the Ginzburg-Landau depairing current of 30 MA/cm^2 at 5 K have been achieved - a Jc enhancement over as-deposited films of more than 50 times. In the field dependence of Jc, a matching field corresponding to the areal pore density has also been clearly observed. The effect of back-filling the pores with magnetic material has then been investigated. While back-filling with Co has been successfully achieved, the effect of the magnetic material on Jc has been found to be largely detrimental compared to voids, although a distinct influence of the magnetic material in producing a hysteretic Jc versus applied field behavior has been observed. This behavior has been tested for compatibility with currently proposed models of magnetic pinning and found to be most closely explained by a model describing the magnetic attraction between the flux vortices and the magnetic inclusions.Comment: 9 pages, 10 figure

    Spin-transfer switching and low-field precession in exchange-biased spin valve nano-pillars

    Full text link
    Using a three-dimensional focused-ion beam lithography process we have fabricated nanopillar devices which show spin transfer torque switching at zero external magnetic fields. Under a small in-plane external bias field, a field-dependent peak in the differential resistance versus current is observed similar to that reported in asymmetrical nanopillar devices. This is interpreted as evidence for the low-field excitation of spin waves which in our case is attributed to a spin-scattering asymmetry enhanced by the IrMn exchange bias layer coupled to a relatively thin CoFe fixed layer.Comment: 11 pages, 4 figures. To appear in APL, April 200

    Critical Current Oscillations in Strong Ferromagnetic Pi-Junctions

    Full text link
    We report magnetic and electrical measurements of Nb Josephson junctions with strongly ferromagnetic barriers of Co, Ni and Ni80Fe20 (Py). All these materials show multiple oscillations of critical current with barrier thickness implying repeated 0-pi phase-transitions in the superconducting order parameter. We show in particular that the Co barrier devices can be accurately modelled using existing clean limit theories and so that, despite the high exchange energy (309 meV), the large IcRN value in the pi-state means Co barriers are ideally suited to the practical development of superconducting pi-shift devices.Comment: 4 pages 3 figures 1 table. Revised version as accepted for publication. To appear in Physical Review Letter
    corecore