10 research outputs found

    Primary resistance to cetuximab therapy in EGFR FISH-positive colorectal cancer patients

    Get PDF
    The impact of KRAS mutations on cetuximab sensitivity in epidermal growth factor receptor fluorescence in situ hybridisation-positive (EGFR FISH+) metastatic colorectal cancer patients (mCRC) has not been previously investigated. In the present study, we analysed KRAS, BRAF, PI3KCA, MET, and IGF1R in 85 mCRC treated with cetuximab-based therapy in whom EGFR status was known. KRAS mutations (52.5%) negatively affected response only in EGFR FISH+ patients. EGFR FISH+/KRAS mutated had a significantly lower response rate (P=0.04) than EGFR FISH+/KRAS wild type patients. Four EGFR FISH+ patients with KRAS mutations responded to cetuximab therapy. BRAF was mutated in 5.0% of patients and none responded to the therapy. PI3KCA mutations (17.7%) were not associated to cetuximab sensitivity. Patients overexpressing IGF1R (74.3%) had significantly longer survival than patients with low IGF1R expression (P=0.006), with no difference in response rate. IGF1R gene amplification was not detected, and only two (2.6%) patients, both responders, had MET gene amplification. In conclusion, KRAS mutations are associated with cetuximab failure in EGFR FISH+ mCRC, even if it does not preclude response. The rarity of MET and IGF1R gene amplification suggests a marginal role in primary resistance. The potential prognostic implication of IGF1R expression merits further evaluation

    Moth species richness, abundance and diversity in fragmented urban woodlands: implications for conservation and management strategies

    No full text
    Urban expansion threatens global biodiversity through the destruction of natural and semi-natural habitats and increased levels of disturbance. Whilst woodlands in urban areas may reduce the impact of urbanisation on biodiversity, they are often subject to under or over-management and consist of small, fragmented patches which may be isolated. Effective management strategies for urban woodland require an understanding of the ecology and habitat requirements of all relevant taxa. Yet, little is known of how invertebrate, and in particular moth, assemblages utilise urban woodland despite being commonly found within the urban landscape. Here we show that the abundance, species richness, and species diversity of moth assemblages found within urban woodlands are determined by woodland vegetation character, patch configuration and the surrounding landscape. In general, mature broadleaved woodlands supported the highest abundance and diversity of moths. Large compact woodlands with proportionally less edge exposed to the surrounding matrix were associated with higher moth abundance than small complex woodlands. Woodland vegetation characteristics were more important than the surrounding landscape, suggesting that management at a local scale to ensure provision of good quality habitat may be relatively more important for moth populations than improving habitat connectivity across the urban matrix. Our results show that the planting of broadleaved woodlands, retaining mature trees and minimising woodland fragmentation will be beneficial for moth assemblages. © 2014 Springer Science+Business Media Dordrecht

    Advances in Cryogenic Techniques for the Long-Term Preservation of Plant Biodiversity

    No full text
    corecore