136 research outputs found

    Morphological factors of the central whorl leaf associated with leaf surface wetness and resistance in sorghum to shoot fly, Atherigona soccata

    Get PDF
    Earlier studies showed that leaf surface water on the central whorl leaf of sorghum seedlings is associated with resistance to shoot fly. In this study, the results of an experiment to determine if leaf surface wetness (LSW) originates from atmospheric condensation or from the plant are described. Morphological structures: trichomes, stomata, leaf cuticle and quantity of surface wax of the central whorl leaf were also examined for their role in LSW production. The results suggest that LSW of the central whorl leaf originates from the plant and is not due to condensation of atmospheric moisture. The presence of trichomes was indirectly associated with LSW and resistance to shoot fly but stomatal density was not associated with LSW production. The amount of wax extracted per 100 mg of fresh weight varied significantly between genotypes and seedling age. It was more in susceptible than in resistant genotypes; however, cuticular thickness was not associated with resistance. It is suggested that LSW could be the result of some form of cuticular movement of water to the leaf surface

    Resistance in sorghum to the shoot fly, Atherigona soccata: epicuticular wax and wetness of the central whorl leaf of young seedlings

    Get PDF
    Sorghum genotypes known to be resistant or susceptible to shoot fly, Atherigona soccata Rondani were examined by scanning electron microscopy for differences in epicuticular wax structure and wetness of the central leaf whorl. Two major types of wax structures were observed: shoot fly resistant and moderately resistant genotypes were characterised by a smooth amorphous wax layer and sparse wax crystals while susceptible genotypes possessed a dense meshwork of crystalline epicuticular wax. The density of wax crystals decreased from the third leaf to the seventh leaf stage and was related to both seedling age and leaf position. Water droplets on susceptible genotypes with dense wax crystals showed spreading at the edges indicating a tendency to wet easily. In resistant genotypes with less dense wax crystals the droplets remained intact and did not spread

    In vitro and in vivo delivery of a sustained release nanocarrier-based formulation of an MRTF/SRF inhibitor in conjunctival fibrosis

    Get PDF
    Abstract Background Sustained drug delivery is a large unmet clinical need in glaucoma. Here, we incorporated a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor, CCG-222740, into slow release large unilamellar vesicles derived from the liposomes DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane) and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), and tested their effects in vitro and in vivo. Results The vesicles were spherical particles of around 130 nm and were strongly cationic. A large amount of inhibitor could be incorporated into the vesicles. We showed that the nanocarrier CCG-222740 formulation gradually released the inhibitor over 14 days using high performance liquid chromatography. Nanocarrier CCG-222740 significantly decreased ACTA2 gene expression and was not cytotoxic in human conjunctival fibroblasts. In vivo, nanocarrier CCG-222740 doubled the bleb survival from 11.0 ± 0.6 days to 22.0 ± 1.3 days (p = 0.001), decreased conjunctival scarring and did not have any local or systemic adverse effects in a rabbit model of glaucoma filtration surgery. Conclusions Our study demonstrates proof-of-concept that a nanocarrier-based formulation efficiently achieves a sustained release of a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor and prevents conjunctival fibrosis in an established rabbit model of glaucoma filtration surgery.https://deepblue.lib.umich.edu/bitstream/2027.42/146540/1/12951_2018_Article_425.pd

    Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells.

    Get PDF
    Translational research in bone tissue engineering is essential for “bench to bedside” patient benefit. However, the ideal combination of stem cells and biomaterial scaffolds for bone repair/regeneration is still unclear. The aim of this study is to investigate the osteogenic capacity of a combination of poly(DL-lactic acid) (PDLLA) porous foams containing 5 wt% and 40 wt% of Bioglass particles with human adipose-derived stem cells (ADSCs) in vitro and in vivo. Live/dead fluorescent markers, confocal microscopy and scanning electron microscopy showed that PDLLA/Bioglass porous scaffolds supported ADSC attachment, growth and osteogenic differentiation, as confirmed by enhanced alkaline phosphatase (ALP) activity. Higher Bioglass content of the PDLLA foams increased ALP activity compared with the PDLLA only group. Extracellular matrix deposition after 8 weeks in the in vitro cultures was evident by Alcian blue/Sirius red staining. In vivo bone formation was assessed by using scaffold/ADSC constructs in diffusion chambers transplanted intraperitoneally into nude mice and recovered after 8 weeks. Histological and immunohistochemical assays indicated significant new bone formation in the 40 wt% and 5 wt% Bioglass constructs compared with the PDLLA only group. Thus, the combination of a well-developed biodegradable bioactive porous PDLLA/Bioglass composite scaffold with a high-potential stem cell source (human ADSCs) could be a promising approach for bone regeneration in a clinical setting
    corecore