42 research outputs found

    Survival disparities in Indigenous and non-Indigenous New Zealanders with colon cancer: the role of patient comorbidity, treatment and health service factors

    Get PDF
    Background Ethnic disparities in cancer survival have been documented in many populations and cancer types. The causes of these inequalities are not well understood but may include disease and patient characteristics, treatment differences and health service factors. Survival was compared in a cohort of Maori ( Indigenous) and non-Maori New Zealanders with colon cancer, and the contribution of demographics, disease characteristics, patient comorbidity, treatment and healthcare factors to survival disparities was assessed. Methods Maori patients diagnosed as having colon cancer between 1996 and 2003 were identified from the New Zealand Cancer Registry and compared with a randomly selected sample of non-Maori patients. Clinical and outcome data were obtained from medical records, pathology reports and the national mortality database. Cancer-specific survival was examined using Kaplane-Meier survival curves and Cox hazards modelling with multivariable adjustment. Results 301 Maori and 328 non-Maori patients with colon cancer were compared. Maori had a significantly poorer cancer survival than non-Maori ( hazard ratio (HR) 1.33, 95% CI 1.03 to 1.71) that was not explained by demographic or disease characteristics. The most important factors contributing to poorer survival in Maori were patient comorbidity and markers of healthcare access, each of which accounted for around a third of the survival disparity. The final model accounted for almost all the survival disparity between Maori and non-Maori patients ( HR 1.07, 95% CI 0.77 to 1.47). Conclusion Higher patient comorbidity and poorer access and quality of cancer care are both important explanations for worse survival in Maori compared with non-Maori New Zealanders with colon cancer

    A framework for considering the utility of models when facing tough decisions in public health: a guideline for policy-makers

    Get PDF
    The COVID-19 pandemic has brought the combined disciplines of public health, infectious disease and policy modelling squarely into the spotlight. Never before have decisions regarding public health measures and their impacts been such a topic of international deliberation, from the level of individuals and communities through to global leaders. Nor have models-developed at rapid pace and often in the absence of complete information-ever been so central to the decision-making process. However, after nearly 3 years of experience with modelling, policy-makers need to be more confident about which models will be most helpful to support them when taking public health decisions, and modellers need to better understand the factors that will lead to successful model adoption and utilization. We present a three-stage framework for achieving these ends

    Crop Updates 2003 - Cereals

    Get PDF
    This session covers twenty one papers from different authors: PLENARY 1. Recognising and responding to new market opportunities in the grains industry, Graham Crosbie, Manager, Grain Products Research, Crop Breeding, Plant Industries, Department of Agriculture 2. Stripe rust – where to now for the WA wheat industry? Robert Loughman1, Colin Wellings2 and Greg Shea11Department of Agriculture, 2University of Sydney Plant Breeding Institute, Cobbitty (on secondment from NSW Agriculture) 3. Benefits of a Grains Biosecurity Plan, Dr Simon McKirdy, Plant Health Australia, Mr Greg Shea, Department of Agriculture 4. Can we improve the drought tolerance of our crops? Neil C. Turner, CSIRO Plant Industry, Wembley 5. The silence of the lambing, Ross Kingwell, Department of Agriculture AGRONOMY AND VARIETIES 6. Maximising performance of wheat varieties, Brenda Shackley, Wal Anderson, Darshan Sharma, Mohammad Amjad, Steve Penny Jr, Melanie Kupsch, Anne Smith, Veronika Reck, Pam Burgess, Glenda Smith and Elizabeth Tierney, Department of Agriculture 7. Wheat variety performance in wet and dry, Peter Burgess 8. e-VarietyGuide for stripe rust – an updated version (1.02 – 2003), Moin Salam, Megan Collins, Art Diggle and Robert Loughman, Department of Agriculture 9. Baudin and Hamelin – new generation of malting barley developed in Western Australia, Blakely Paynter, Roslyn Jettner and Kevin Young, Department of Agriculture 10. Oaten hay production, Jocelyn Ball, Natasha Littlewood and Lucy Anderton, Department of Agriculture 11. Improving waterlogging tolerance in wheat and barley, Irene Waters and Tim Setter, Department of Agriculture 12. Broadscale variety comparisons featuring new wheat varieties, Jeff Russell, Department of Agriculture, Centre for Cropping Systems BIOTECHNOLOGY 13. Barley improvement in the Western Region – the intergration of biotechnologies, Reg Lance, Chengdao Li and Sue Broughton, Department of Agriculture 14. The Western Australian State Agricultural Biotechnology Centre – what we are and what we do, Michael Jones, WA State Agricultural Biotechnology Centre, Murdoch University 15. Protein and DNA methods for variety identification, Dr Grace Zawko, Saturn Biotech Limited 16. The Centre for High-throughput Agricultural Genetic Analysis (CHAGA), Keith Gregg, CHAGA, Murdoch University NUTRITION 17. Potassium – topdressed, drilled or banded? Stephen Loss, Patrick Gethin, Ryan Guthrie, Daniel Bell, Wesfarmers CSBP 18. Liquid phosphorus fertilisers in WA, Stephen Loss, Frank Ripper, Ryan Guthrie, Daniel Bell and Patrick Gethin, Wesfarmers CSBP 19. Wheat nutrition in the high rainfall cropping zone, Narelle Hill1and Laurence Carslake2, 1Department of Agriculture, 2Wesfarmers Landmark PESTS AND DISEASES 20. Managenent options for root lesion nematode in West Australian cropping systems, Vivien Vanstone, Sean Kelly and Helen Hunter, Department of Agriculture STORAGE 21. Aeration can profit your grain enterprise, Christopher R. Newman, Department of Agricultur

    Some methods for blindfolded record linkage

    Get PDF
    BACKGROUND: The linkage of records which refer to the same entity in separate data collections is a common requirement in public health and biomedical research. Traditionally, record linkage techniques have required that all the identifying data in which links are sought be revealed to at least one party, often a third party. This necessarily invades personal privacy and requires complete trust in the intentions of that party and their ability to maintain security and confidentiality. Dusserre, Quantin, Bouzelat and colleagues have demonstrated that it is possible to use secure one-way hash transformations to carry out follow-up epidemiological studies without any party having to reveal identifying information about any of the subjects – a technique which we refer to as "blindfolded record linkage". A limitation of their method is that only exact comparisons of values are possible, although phonetic encoding of names and other strings can be used to allow for some types of typographical variation and data errors. METHODS: A method is described which permits the calculation of a general similarity measure, the n-gram score, without having to reveal the data being compared, albeit at some cost in computation and data communication. This method can be combined with public key cryptography and automatic estimation of linkage model parameters to create an overall system for blindfolded record linkage. RESULTS: The system described offers good protection against misdeeds or security failures by any one party, but remains vulnerable to collusion between or simultaneous compromise of two or more parties involved in the linkage operation. In order to reduce the likelihood of this, the use of last-minute allocation of tasks to substitutable servers is proposed. Proof-of-concept computer programmes written in the Python programming language are provided to illustrate the similarity comparison protocol. CONCLUSION: Although the protocols described in this paper are not unconditionally secure, they do suggest the feasibility, with the aid of modern cryptographic techniques and high speed communication networks, of a general purpose probabilistic record linkage system which permits record linkage studies to be carried out with negligible risk of invasion of personal privacy

    Crop Updates 2001 - Cereals

    Get PDF
    This session covers forty two papers from different authors: PLENARY 1. Planning your cropping program in season 2001, Dr Ross Kingwell, Agriculture Western Australia and University of Western Australia WORKSHOP 2. Can we produce high yields without high inputs? Wal Anderson, Centre for Cropping Systems, Agriculture Western Australia VARIETIES 3. Local and interstate wheat variety performance and $ return to WA growers, Eddy Pol, Peter Burgess and Ashley Bacon, Agritech Crop Research CROP ESTABLISHMENT 4 Soil management of waterlogged soils, D.M. Bakker, G.J. Hamilton, D. Houlbrooke and C. Spann, Agriculture Western Australia 5. Effect of soil amelioration on wheat yield in a very dry season, M.A Hamza and W.K. Anderson, Agriculture Western Australia 6. Fuzzy tramlines for more yield and less weed, Paul Blackwell1 and Maurice Black2 1Agriculture Western Australia, 2Harbour Lights Estate, Geraldton 7. Tramline farming for dollar benefits, Paul Blackwell, Agriculture Western Australia NUTRITION 8. Soil immobile nutrients for no-till crops, M.D.A. Bolland1, R.F. Brennan1,and W.L. Crabtree2, 1Agriculture Western Australia, 2Western Australian No-Tillage Farmers Association 9. Burn stubble windrows: to diagnose soil fertility problems, Bill Bowden, Chris Gazey and Ross Brennan, Agriculture Western Australia 10. Calcium: magnesium ratios; are they important? Bill Bowden1, Rochelle Strahan2, Bob Gilkes2 and Zed Rengel2 1Agriculture Western Australia, 2Department of Soil Science and Plant Nutrition, UWA 11. Responses to late foliar applications of Flexi-N, Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm 12. A comparison of Flexi-N placements, Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm 13. What is the best way to apply potassium? Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, CSBP futurefarm 14. Claying affects potassium nutrition in barley, Stephen Loss, David Phelps, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm 15. Nitrogen and potassium improve oaten hay quality, Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm AGRONOMY 16. Agronomic responses of new wheat varieties in the northern wheatbelt, Darshan Sharma and Wal Anderson, Agriculture Western Australia 17. Wheat agronomy research on the south coast, Mohammad Amjad and Wal Anderson, Agriculture Western Australia 18. Influence of sowing date on wheat yield and quality in the south coast environment, Mohammad Amjadand Wal Anderson, Agriculture Western Australia 19. More profit from durum, Md.Shahajahan Miyan and Wal Anderson, Agriculture Western Australia 20. Enhancing recommendations of flowering and yield in wheat, JamesFisher1, Senthold Asseng2, Bill Bowden1 and Michael Robertson3 ,1AgricultureWestern Australia, 2CSIRO Plant Industry, 3CSIRO Sustainable Ecosystems 21. When and where to grow oats, Glenn McDonald, Agriculture Western Australia 22. Managing Gaidner barley for quality, Kevin Young and Blakely Paynter, Agriculture Western Australia PESTS AND DISEASES 23. Strategies for leaf disease management in wheat, Jatinderpal Bhathal1, Cameron Weeks2, Kith Jayasena1 and Robert Loughman1 ,1Agriculture Western Australia. 2Mingenew-Irwin Group Inc 24. Strategies for leaf disease management in malting barley, K. Jayasena1, Q. Knight2 and R. Loughman1, 1Agriculture Western Australia, 2IAMA Agribusiness 25. Cereal disease diagnostics, Dominie Wright and Nichole Burges, Agriculture Western Australia 26. The big rust: Did you get your money back!! Peter Burgess, Agritech Crop Research 27. Jockey – winning the race against disease in wheat, Lisa-Jane Blacklow, Rob Hulme and Rob Giffith, Aventis CropScience 28. Distribution and incidence of aphids and barley yellow dwarf virus in over-summering grasses in WA wheatbelt, Jenny Hawkes and Roger Jones, CLIMA and Agriculture Western Australia 29. Further developments in forecasting aphid and virus risk in cereals, Debbie Thackray, Jenny Hawkes and Roger Jones, Agriculture Western Australia and Centre for Legumes in Mediterranean Agriculture 30. Effect of root lesion nematodes on wheat yields in Western Australia, S. B. Sharma, S. Kelly and R. Loughman, Crop Improvement Institute, Agriculture Western Australia 31. Rotational crops and varieties for management of root lesion nematodes in Western Australia, S.B. Sharma, S. Kelly and R. Loughman, Crop Improvement Institute, Agriculture Western Australia WEEDS 32. Phenoxy herbicide tolerance of wheat, Peter Newman and Dave Nicholson, Agriculture Western Australia 33. Tolerance of wheat to phenoxy herbicides,Harmohinder S. Dhammu, Terry Piper and Mario F. D\u27Antuono, Agriculture Western Australia 34. Herbicide tolerance of durum wheats, Harmohinder S. Dhammu, Terry Piper and David Nicholson, Agriculture Western Australia 35. Herbicide tolerance of new wheats, Harmohinder S. Dhammu, Terry Piper and David F. Nicholson, Agriculture Western Australia BREEDING 36. Towards molecular breeding of barley: construction of a molecular genetic map, Mehmet Cakir1, Nick Galwey1, David Poulsen2, Garry Ablett3, Reg Lance4, Rob Potter5 and Peter Langridge6,1Plant Sciences, Faculty of Agriculture, UWA, 2Queensland Department of Primary Industries, Qld, 3Centre for Plant Conservation Genetics Southern Cross University, Lismore NSW, 5SABC Murdoch University, WA, 6Department of Plant Science University of Adelaide, Glen Osmond SA 37. Toward molecular breeding of barley: Identifying markers linked to genes for quantitative traits, Mehmet Cakir1, Nick Galwey1, David Poulsen2, Reg Lance3, Garry Ablett4, Greg Platz2, Joe Panozzo5, Barbara Read6, David Moody5, Andy Barr7 and Peter Langridge7 , 1Plant Sciences, Faculty of Agriculture, UWA, 2Queensland Department of Primary Industries, Warwick, QLD,3Agriculture Western Australia, 4Centre for Plant Conservation Genetics, Southern Cross University, Lismore NSW, 5VIDA Private Bag 260, Horsham VIC, 6NSW Dept. of Agriculture, Wagga Wagga NSW, 7Department of Plant Science, University of Adelaide, Glen Osmond SA 38. Can we improve grain yield by breeding for greater early vigour in wheat? Tina Botwright1, Tony Condon1, Robin Wilson2 and Iain Barclay2, 1CSIRO Plant Industry, 2Agriculture Western Australia MARKETING AND QUALITY 39. The Crop Improvement Royalty, Howard Carr, Agriculture Western Australia 40. GrainGuardÔ - The development of a protection plan for the wheat industry, Greg Shea, Agriculture Western Australia CLIMATE 41. Rainfall – what happened in 2000 and the prospects for 2001, Ian Foster, Agriculture Western Australia 42. Software for climate management issues, David Tennant,Agriculture Western Australia CONTRIBUTING AUTHOR CONTACT DETAIL

    Life and living in advanced age: a cohort study in New Zealand - Te Puāwaitanga o Nga Tapuwae Kia Ora Tonu, LiLACS NZ: Study protocol

    Get PDF
    The number of people of advanced age (85 years and older) is increasing and health systems may be challenged by increasing health-related needs. Recent overseas evidence suggests relatively high levels of wellbeing in this group, however little is known about people of advanced age, particularly the indigenous Māori, in Aotearoa, New Zealand. This paper outlines the methods of the study Life and Living in Advanced Age: A Cohort Study in New Zealand. The study aimed to establish predictors of successful advanced ageing and understand the relative importance of health, frailty, cultural, social & economic factors to successful ageing for Māori and non-Māori in New Zealand

    A connectome and analysis of the adult Drosophila central brain.

    Get PDF
    The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain
    corecore