13 research outputs found

    The Near Infrared Imager and Slitless Spectrograph for JWST -- V. Kernel Phase Imaging and Data Analysis

    Full text link
    Kernel phase imaging (KPI) enables the direct detection of substellar companions and circumstellar dust close to and below the classical (Rayleigh) diffraction limit. We present a kernel phase analysis of JWST NIRISS full pupil images taken during the instrument commissioning and compare the performance to closely related NIRISS aperture masking interferometry (AMI) observations. For this purpose, we develop and make publicly available the custom "Kpi3Pipeline" enabling the extraction of kernel phase observables from JWST images. The extracted observables are saved into a new and versatile kernel phase FITS file (KPFITS) data exchange format. Furthermore, we present our new and publicly available "fouriever" toolkit which can be used to search for companions and derive detection limits from KPI, AMI, and long-baseline interferometry observations while accounting for correlated uncertainties in the model fitting process. Among the four KPI targets that were observed during NIRISS instrument commissioning, we discover a low-contrast (~1:5) close-in (~1 λ/D\lambda/D) companion candidate around CPD-66~562 and a new high-contrast (~1:170) detection separated by ~1.5 λ/D\lambda/D from 2MASS~J062802.01-663738.0. The 5-σ\sigma companion detection limits around the other two targets reach ~6.5 mag at ~200 mas and ~7 mag at ~400 mas. Comparing these limits to those obtained from the NIRISS AMI commissioning observations, we find that KPI and AMI perform similar in the same amount of observing time. Due to its 5.6 times higher throughput if compared to AMI, KPI is beneficial for observing faint targets and superior to AMI at separations >325 mas. At very small separations (<100 mas) and between ~250-325 mas, AMI slightly outperforms KPI which suffers from increased photon noise from the core and the first Airy ring of the point-spread function.Comment: 34 pages, 17 figures, accepted for publication in PAS

    The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry

    Get PDF
    The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths.</p

    The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry

    Get PDF
    The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths.</p

    The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry

    Get PDF
    The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths

    The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry

    Get PDF
    The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths

    The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope -- IV. Aperture Masking Interferometry

    Full text link
    The James Webb Space Telescope's Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 \micron~wavelengths, and a bright limit of ≃4\simeq 4 magnitudes in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8\simeq 8 W2 magnitudes. AMI (and KPI) achieve an inner working angle of ∼70\sim 70 mas that is well inside the ∼400\sim 400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths.Comment: 30 pages, 10 figure

    Two Rings and a Marginally Resolved, 5 au Disk around LkCa 15 Identified via Near-infrared Sparse Aperture Masking Interferometry

    Get PDF
    International audienceSparse aperture masking interferometry (SAM) is a high-resolution observing technique that allows for imaging at and beyond a telescope's diffraction limit. The technique is ideal for searching for stellar companions at small separations from their host star; however, previous analyses of SAM observations of young stars surrounded by dusty disks have had difficulties disentangling planet and extended disk emission. We analyze VLT/SPHERE-IRDIS SAM observations of the transition disk LkCa 15, model the extended disk emission, probe for planets at small separations, and improve contrast limits for planets. We fit geometrical models directly to the interferometric observables and recover previously observed extended disk emission. We use dynamic nested sampling to estimate uncertainties on our model parameters and to calculate evidences to perform model comparison. We compare our extended disk emission models against point-source models to robustly conclude that the system is dominated by extended emission within 50 au. We report detections of two previously observed asymmetric rings at ~17 and ~45 au. The peak brightness location of each model ring is consistent with the previous observations. We also, for the first time with imaging, robustly recover an elliptical Gaussian inner disk, previously inferred via SED fitting. This inner disk has an FWHM of 5 au and a similar inclination and orientation to the outer rings. Finally, we recover no clear evidence for candidate planets. By modeling the extended disk emission, we are able to place a lower limit on the near-infrared companion contrast of at least 1000

    The Origin of the Doppler Flip in HD 100546: A Large-scale Spiral Arm Generated by an Inner Binary Companion

    Get PDF
    International audienceCompanions at subarcsecond separation from young stars are difficult to image. However, their presence can be inferred from the perturbations they create in the dust and gas of protoplanetary disks. Here we present a new interpretation of SPHERE polarized observations that reveal the previously detected inner spiral in the disk of HD 100546. The spiral coincides with a newly detected 12CO inner spiral and the previously reported CO emission Doppler flip, which has been interpreted as the signature of an embedded protoplanet. Comparisons with hydrodynamical models indicate that this Doppler flip is instead the kinematic counterpart of the spiral, which is likely generated by an inner companion inside the disk cavity

    Octofitter: Fast, Flexible, and Accurate Orbit Modeling to Detect Exoplanets

    No full text
    As next-generation imaging instruments and interferometers search for planets closer to their stars, they must contend with increasing orbital motion and longer integration times. These compounding effects make it difficult to detect faint planets but also present an opportunity. Increased orbital motion makes it possible to move the search for planets into the orbital domain, where direct images can be freely combined with the radial velocity and proper motion anomaly, even without a confirmed detection in any single epoch. In this paper, we present a fast and differentiable multimethod orbit-modeling and planet detection code called Octofitter. This code is designed to be highly modular and allows users to easily adjust priors, change parameterizations, and specify arbitrary function relations between the parameters of one or more planets. Octofitter further supplies tools for examining model outputs including prior and posterior predictive checks and simulation-based calibration. We demonstrate the capabilities of Octofitter on real and simulated data from different instruments and methods, including HD 91312, simulated JWST/NIRISS aperture masking interferometry observations, radial velocity curves, and grids of images from the Gemini Planet Imager. We show that Octofitter can reliably recover faint planets in long sequences of images with arbitrary orbital motion. This publicly available tool will enable the broad application of multiepoch and multimethod exoplanet detection, which could improve how future targeted ground- and space-based surveys are performed. Finally, its rapid convergence makes it a useful addition to the existing ecosystem of tools for modeling the orbits of directly imaged planets

    The Origin of the Doppler Flip in HD 100546: A Large-scale Spiral Arm Generated by an Inner Binary Companion

    No full text
    Companions at subarcsecond separation from young stars are difficult to image. However, their presence can be inferred from the perturbations they create in the dust and gas of protoplanetary disks. Here we present a new interpretation of SPHERE polarized observations that reveal the previously detected inner spiral in the disk of HD 100546. The spiral coincides with a newly detected 12CO inner spiral and the previously reported CO emission Doppler flip, which has been interpreted as the signature of an embedded protoplanet. Comparisons with hydrodynamical models indicate that this Doppler flip is instead the kinematic counterpart of the spiral, which is likely generated by an inner companion inside the disk cavity.</p
    corecore