197 research outputs found
Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI)
The Community Earth System Model (CESM1) CAM4-chem has been used to perform the Chemistry Climate Model Initiative (CCMI) reference and sensitivity simulations. In this model, the Community Atmospheric Model version 4 (CAM4) is fully coupled to tropospheric and stratospheric chemistry. Details and specifics of each configuration, including new developments and improvements are described. CESM1 CAM4-chem is a low-top model that reaches up to approximately 40km and uses a horizontal resolution of 1.9° latitude and 2.5° longitude. For the specified dynamics experiments, the model is nudged to Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. We summarize the performance of the three reference simulations suggested by CCMI, with a focus on the last 15 years of the simulation when most observations are available. Comparisons with selected data sets are employed to demonstrate the general performance of the model. We highlight new data sets that are suited for multi-model evaluation studies. Most important improvements of the model are the treatment of stratospheric aerosols and the corresponding adjustments for radiation and optics, the updated chemistry scheme including improved polar chemistry and stratospheric dynamics and improved dry deposition rates. These updates lead to a very good representation of tropospheric ozone within 20% of values from available observations for most regions. In particular, the trend and magnitude of surface ozone is much improved compared to earlier versions of the model. Furthermore, stratospheric column ozone of the Southern Hemisphere in winter and spring is reasonably well represented. All experiments still underestimate CO most significantly in Northern Hemisphere spring and show a significant underestimation of hydrocarbons based on surface observations
Wildlife trail or systematic? Camera trap placement has little effect on estimates of mammal diversity in a tropical forest in Gabon
peer reviewedCamera traps (CTs) have been increasingly used for wildlife monitoring worldwide. In the tropics, most CT inventories target wildlife‐friendly sites, and CTs are commonly placed towards wildlife trails. However, it has been argued that this placement strategy potentially provides biased results in comparison to more systematic or randomized approaches. Here, we investigated the impact of CT placement on the remotely sensed mammal diversity in a tropical forest in Gabon by comparing pairs of systematically placed and wildlife‐trail‐oriented CTs. Our survey protocol consisted of 15–17 sampling points arranged on a 2 km2 grid and left for one month in the field. This protocol was replicated sequentially in four areas. Each sampling point comprised a CT pair: the ‘systematic CT’, installed at the theoretical point and systematically oriented towards the most uncluttered view; and the ‘trail CT’, placed within a 20‐m radius and facing a wildlife trail. For the vast majority of species, the detection probabilities were comparable between placements. Species average capture rates were slightly higher for trail‐based CTs, though this trend was not significant for any species. Therefore, the species richness and composition of the overall community, such as the spatial distribution patterns (from evenly spread to site‐restricted) of individual species, were similarly depicted by both placements. Opting for a systematic orientation ensures that pathways used preferentially by some species—and avoided by others—will be sampled proportionally to their density in the forest undergrowth. However, trail‐based placement is routinely used, already producing standardised data within large‐scale monitoring programmes. Here, both placements provided a comparable picture of the mammal community, though it might not be necessarily true in depauperate areas. Both types of CT data can nevertheless be combined in multi‐site analyses, since methods now allow accounting for differences in study design and detection bias in original CT data.Programme de Promotion de l’Exploitation Certifiée des Forêts (PPECF
Fusarium wilt incidence and common bean yield according to the preceding crop and the soil tillage system
The objective of this work was to evaluate the effects of preceding crops and tillage systems on the incidence of Fusarium wilt (Fusarium oxysporum f. sp. phaseoli) and common bean (Phaseolus vulgaris) yield. The cultivar BRS Valente was cultivated under center‑pivot irrigation in the winter seasons of 2003, 2004 and 2005, after several preceding crops established in the summer seasons. Preceding crops included the legumes Cajanus cajan (pigeon pea), Stylosanthes guianensis, and Crotalaria spectabilis; the grasses Pennisetum glaucum (millet), Sorghum bicolor (forage sorghum), Panicum maximum, and Urochloa brizantha; and a consortium of maize (Zea mays) and U. brizantha (Santa Fé system). Experiments followed a strip‑plot design, with four replicates. Fusarium wilt incidence was higher in the no‑tillage system. Higher disease incidences corresponded to lower bean yields in 2003 and 2004. Previous summer cropping with U. brizantha, U. brizantha + maize consortium, and millet showed the lowest disease incidence. Therefore, the choice of preceding crops must be taken into account for managing Fusarium wilt on irrigated common bean crops in the Brazilian Cerrado
Regions of the genome that affect agronomic performance in two-row barley
Quantitative trait locus (QTL) main effects and QTL by environment (QTL × E) interactions for seven agronomic traits (grain yield, days to heading, days to maturity, plant height, lodging severity, kernel weight, and test weight) were investigated in a two-row barley (Hordeum vulgare L.) cross, Harrington/TR306. A 127-point base map was constructed from markers (mostly RFLP) scored in 146 random double-haploid (DH) lines from the Harrington/TR306 cross. Field experiments involving the two parents and 145 random DH lines were grown in 1992 and/or 1993 at 17 locations in North America. Analysis of QTL was based on simple and composite interval mapping. Primary QTL were declared at positions where both methods gave evidence for QTL. The number of primary QTL ranged from three to six per trait, collectively explaining 34 to 52% of the genetic variance. None of these primary QTL showed major effects, but many showed effects that were consistent across environments. The addition of secondary QTL gave models that explained 39 to 80% of the genetic variance. The QTL were dispersed throughout the barley genome and some were detected in regions where QTL have been found in previous studies. Eight chromosome regions contained pleiotropic loci and/or linked clusters of loci that affected multiple traits. One region on chromosome 7 affected all traits except days to heading. This study was an intensive effort to evaluate QTL in a narrow-base population grown in a large set of environments. The results reveal the types and distributions of QTL effects manipulated by plant breeders and provide opportunities for future testing of marker-assisted selection
Recommended from our members
Measurement of molybdenum mirror reflectivities
The reflectivity versus angle for a variety of molybdenum mirrors has been measured for both hard and soft x-rays in an attempt to deduce any variation in performance between single crystal, polycrystalline, and evaporated mirrors. A filling technique has been used to arrive at the roughness of the mirrors. An approach to utilize such measurements to characterize mirrors and derive low energy optical constants or many elements is outlined. 19 refs., 7 figs
Effects of sleep deprivation on neural functioning: an integrative review
Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of sleep deprivation on brain activity include reduced cortical responsiveness to incoming stimuli, reflecting reduced attention. On a microscopic level, sleep deprivation is associated with increased levels of adenosine, a neuromodulator that has a general inhibitory effect on neural activity. The inhibition of cholinergic nuclei appears particularly relevant, as the associated decrease in cortical acetylcholine seems to cause effects of sleep deprivation on macroscopic brain activity. In general, however, the relationships between the neural effects of sleep deprivation across observation scales are poorly understood and uncovering these relationships should be a primary target in future research
- …