140 research outputs found

    Constructive and destructive use of compilers in elliptic curve cryptography

    Get PDF
    Although cryptographic software implementation is often performed by expert programmers, the range of performance and security driven options, as well as more mundane software engineering issues, still make it a challenge. The use of domain specific language and compiler techniques to assist in description and optimisation of cryptographic software is an interesting research challenge. In this paper we investigate two aspects of such techniques, focusing on Elliptic Curve Cryptography (ECC) in particular. Our constructive results show that a suitable language allows description of ECC based software in a manner close to the original mathematics; the corresponding compiler allows automatic production of an executable whose performance is competitive with that of a hand-optimised implementation. In contrast, we study the worrying potential for naïve compiler driven optimisation to render cryptographic software insecure. Both aspects of our work are set within the context of CACE, an ongoing EU funded project on this general topic

    Assessing recovery from acidification of European surface waters in the year 2010: Evaluation of projections made with the MAGIC Model in 1995

    Get PDF
    In 1999 we used the MAGIC (Model of Acidification of Groundwater In Catchments) model to project acidification of acid-sensitive European surface waters in the year 2010, given implementation of the Gothenburg Protocol to the Convention on Long-Range Transboundary Air Pollution (LRTAP). A total of 202 sites in 10 regions in Europe were studied. These forecasts can now be compared with measurements for the year 2010, to give a "ground truth" evaluation of the model. The prerequisite for this test is that the actual sulfur and nitrogen deposition decreased from 1995 to 2010 by the same amount as that used to drive the model forecasts; this was largely the case for sulfur, but less so for nitrogen, and the simulated surface water [NO3-] reflected this difference. For most of the sites, predicted surface water recovery from acidification for the year 2010 is very close to the actual recovery observed from measured data, as recovery is predominantly driven by reductions in sulfur deposition. Overall these results show that MAGIC successfully predicts future water chemistry given known changes in acid deposition

    Indicadores de qualidade do solo em sistemas de cultivo orgânico e convencional no semi-árido Cearense.

    Get PDF
    A qualidade do solo pode mudar com o passar do tempo, em decorrência de eventos naturais ou ações antrópicas. A adoção de práticas de cultivo orgânico reduz o revolvimento do solo, favorecendo a recuperação de suas propriedades físicas e químicas. Este trabalho teve como objetivo comparar propriedades físicas,químicas e biológicas de solos cultivados com algodão em bases orgânicas e no sistema convencional, assim como identificar as que possam ser utilizadas como indicadores de qualidade do solo. Selecionaram-se seis áreas submetidas ao cultivo orgânico e três ao cultivo convencional para coleta de amostras de solo deformadas e indeformadas, nas camadas de 0–10, 10–20 e 20–30 cm. Técnicas de estatística univariada e multivariada foram utilizadas para análise dos dados. Os resultados mostraram que os indicadores físicos e químicos testados individualmente não foram sensíveis para diferenciar as áreas sob sistema de cultivo orgânico daquelas sob cultivo convencional. No entanto, a aplicação de técnicas de análise multivariada – no caso, componentes principais e a discriminante de Anderson – permitiu a distinção entre algumas áreas cultivadas sob cultivo orgânico comparativamente às convencionais, até mesmo as que estavam em transição.Dos indicadores biológicos, a fauna edáfica mostrou-se mais precisa na avaliação da qualidade do solo, distinguindo de forma satisfatória as áreas sob sistema de cultivo orgânico das que estavam sob sistema convencional

    Chemistry, Mineralogy, and Grain Properties at Namib and High Dunes, Bagnold Dune Field, Gale Crater, Mars: A Synthesis of Curiosity Rover Observations

    Get PDF
    The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45–500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H_2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H_2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H_2O

    Design and construction of the MicroBooNE detector

    Get PDF
    This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported
    corecore